Coupling Expert Systems with Internet
using Monitor Coupling Paradigm

By
Hussam Omar Saadeh

Supervisor

Dr. Khalil el Hindi

P

Co-Supervisor

Dr. Monecb Qutaishat

Lbalt bl all LIS a3ad
Ll e 32l 838

) g ol 3 sl

Submitted in Partial Fulfiliment of the Requirements for the

Degree of Master of Science in
Computer Science

A Faculty of Graduate Studies
University of Jordan

July 1999

All Rights Reserved - Library of University of Jordan - Center. of Thesis Deposit

This thesis was successfully defended and approved on 11-July-1999.

Examination Commitiee Signature

Dr. Khalil el Hindi / Chairman
Asst. Prof. of Artificial Intelligence

Dr. Moneeb Qutaishat / Memiber
Asst. Prof. of Databases

Dr. Riad Jabri / Memther
Assoc. Prof. of Compilers

Dr. Sami Sarhan / Member
Asst. Prof. of Computer Architecture

Dr. Abdel-Raoof Al-Hallaq / Mentber
Asst. Prof. of Computer Network

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

i
Acknowledgement

I would like to present the deepest acknowledgement to my supervisor Dr, Khalil
el-Hindi on the efforts, guidance and support he gave me throughout this thesis. I do
highly appreciate the trust he put on me by giving me the opportunity to work on

extending the Monitor Coupling Paradigm over the Internet, thank you sir.

I would also like to express intensive thanks to my co-supervisor Dr. Monneb
Qutaishat, besides his excellent hints on databases, he was very helpful in providing and

facilitating the required resources for this research.

Of course, I am in debt to my family. They have provided a full support, a very

healthy environment and constructive advises.

Many colleagues helped me in gathering information and gave very useful
suggestions 1 would iike to thank all folks, especial thanks to Tayseer Hasan, Khalid

Waleed and 1ssa Qonbor.

Without the cooperation and understanding of the Arab Turnkey Systems — ATS,
the company with which I work, it would be very difficult to continue my graduate

study.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

List of Contents

Examination COmMmItee ..o i
Acknowledgement ... 1l
List Of COMEBNTS ..ottt e iv
List 0F FIBUTES ..o e et Vil
List of Tables ... e e, viii
Chapter 1: Introduction ..ot ssnssssssnen 1
1.1 Coupling databases and expert SYStemsc.cccoiieiiiiiimeiin e, 2
1.2 Extending the MCP for the Internet environmentccoooeiiini i, 4
1.3 Compromised approach for tightly coupling ATMS with Rete Network 6
1.4 Thesis STrUCIUTEooiiiiii e, 6
Chapter 2: ATMS-based Reasoning Systems and Databasesccoivicernrirresonerens 7
21 INEFOAUCLION .ottt ettt 7
2.2 ATMS-based reasoning SYSLCIMIocoeiiiiieiiirtiiriinreee et ssee s e 7
2.2.1 Production Rule System ..o 3
2.2.2 The Rete Algorithm ... 9
2.23 Basic ATMS e 11
2.2.4 Coupling ATMS with a Rete-based production system 15
2.2.4.1 ATMS loosely coupled production systemcccco i, 15
2.2.42 ATMS tightly coupled production system — the Morgue System 16
2.2.4.3 ATMS tightly coupled production system — the Hindi System 17

2.3 Expert systems and Databases coupling approachesccocooeo i 19
2.3.1 Loose coupling experts and databasesccooeiiiin, TR 20
2.3.2 Tight coupling databases and databases ..o 21
2.3.3 Monitor Coupling Paradigm s SOOI SOOIV 22

2.4 SUIMMATY .ottt ettt et e s etr et e e tr s as e e 25

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Chapter 3: The Network Computing and the Internetcccovvcniicncicncrrenenirrnnnnnss 26
3T INrOdUCHION L. 26
3.2 Communication Computing Modelsccooooiiiii i 27

3.2.1 Client/Server Model ... 28
3.2.2 Publish/Subscribe Model ... 29
3.3 Distributed Object (Component) Technology ... 31
3.3.1 OMG CORBA ..o et 32
332 EUR S JAVA oo 34
3.4 Oracle8/ — database system for Internetc.ccooiiviiiiiii e, 37
3.4.1 Java tightly integrated with Oracle8/ ..., 37
3.4.2 Oracle8i Advanced QUeNInNg ..., 38
F.5 SUMMAY e e 40

Chapter 4: A Model for Extending MCP over the Internetouueenseirenrarenisrareraas 41
4.1 TIHIOAUCHION ... e, 41
4.2 Limitations of the original MCP for the Internet environment 42
4.3 The general architecture of the iIMCP ... 43

4.3.1 Productionrules in the iIMCP ..., 45
4.3.2 A three-tier/two-tier configuration approach 47
4.3.3 Main characteristics of the three-tier IMCP ... 49
4.4 The logic and knowledge structure of the ATMS-based ES 50
4.4.1 Knowledge representationco..ooeivoiniioniiieoooe e 51
4.4.1.1 External knowledge representation designc.ocooiiveeiiee 52
4.4.1.2 Internal knowledge representation design ... 56
4.4.2 The inference engine designcccoooviiieiiiieee e, 58
4421 The ATMS deSIgN ..o 59
4.4.2.2 The Rete-based production system design .. 60
4.4.3 Generating of retrieve query commandsocooeiiioneeee 61
4.5 Middie-tier processing roleccocooiiviins i, 65
4.5.1 Middle-tier agent data StrUCtUreooviiiiiiiniiieie e, 67
4.5.2 Middle-tier processing mechanism ... 68
4.6 Database notification mechanism ... a0 T
4.6.1 Publishing rules mechanism SRRSO UPPUR 72
4.6.2 Subscribing Rules Mechanism ..o 72

A7 SUMIMENY ..ottt er e, 73

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

i

Chapter 5: A New Compromised Improvement Approach to ATMS Tightly

Coupled Production SYSTENIS .uiuccrerirecsaisaisimsoainiesmssisscsacssansnssesssssessinesanessneenes 75
5.1 INOAUCHION —....ov...ooeooove oo TS
5.2 Drawbacks of the Morgue and Hindi Systemsccooooivie i 76
5.3 The new compromised approach ..., 77

5.3.1 Discarding a tuple from the compromised system 78
5.3.2 Asserting a tuple to the compromised SyStemccooveoeeeeceeen. 81
5.3.3 A summary of the three different approachesoccoiiiiil 82
5.4 An empirical study on the three approaches ... 83
5.4.1 Student Registration Guidance System (SRGS): a case study 84
5.4.2 Measuring the efficiency of the three systems as standalone systems 86
5.4.3 The efficiency of the three systems as a part of the /MCP 90

3.4.3.1 Retract an assumption due to deleting the corresponding tuple from the
coupled database SYStemcoocooiiii 91

5.4.3.2 Assert an assumption when a new relevant tuple is inserted into the
coupled database System ...t iieieee e 93

5.4.3.3 Retract followed by reassert an assumption when a tuple is discarded and
then revived during a transient database update operation...................... 94

5.4.3.4 Retract a tuple and assert another one due 2 database update operation 96

5.5 SUMIMIATY ..ottt sttt s e s e et a s ea e 97
Chapter 6: Conclusion and FUuture Work.......ccuueiveierenerersrvsrsrssiossesssasssesnsscasnns 99
O.1 ConcluSIon ..., 99
0.2 Future WOork ..o 101
REfEIENCES ..ovvvieiireiiriiicsiniisiiissiestisssss i trrrrrssanesenessesesasnsnereneaessasasasesasansasas .104
ADPPENAICES 1iieresiramerenerssmererecsenesamisnessnerenesorerssessrsosssssasssssnsssnsnonssrasnsnerasasssnsnsssesssass 108
Appendix A: Student Registration Guidance System - Knowledge Base 108
Appendix B: Experiments’ Case Specific Datacc.ocoooovioeiieiieeie el 122

Abstract in Arabic FE TPV TOTO IO SOOI 132

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

viil

List of Tables

Table +-7: Query filter expression for the example in section 4.3.1.1 ... 63
Table 4-2: SQL statements for the example in section 4.3.1.1 ..o, 70
Tabie +#-3: Values of the DBChiange attributesc..ccoceei e 72
Table 5-1: Main cases of the match algorithm in the three approaches 83
Table 5-2. Time comparison of standalone Morgue-like systems 87
Table 5-3: Operations comparison of standalone Morgue-like systems 88
Table 5-4: Space comparison of standalone Morgue-like systems 89
Table 5-5: Time comparison of normal reasoning for Morgue-like systems 91
Table 5-6; Operations comparison of normal recasoning for Morgue-like systems 91
Table 5-7: Space comparison of normal reasoning for Morgue-like systems 91
Table 5-8: Time comparison for the retract operation in Morgue-like systems 92
Table 5-9: Space comparison for the retract operation in Morgue-like systems 92
Table 5-70. Time comparison for the assert operation in Morgue-like systems 94

Table 5-/1: Operations comparison for the assert operation in Morgue-like systems .., 94
‘Table 5-712: Space comparison for the assert operation in Morgue-like systems 94
Table 5-/3: Time comparison for the retract-reassert operation in Morgue-like systems 95
Table 5-74: Operations comparison for the retract-reassert operation in Morgue-like
SYSERITIS L oottt ettt e e et e 96
Table 5-15; Time comparison for the update operation in Morgue-like systems 96
Table 5-16: Operations comparison for the update operat'ion in Morgue-like systems .97

Table 5-17: Space comparison for the update operation in Morgue-like systems 97

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

vii

List of Figures

Figure /-/: Communication mechanism in three-tier iIMCP..............occooiviiivii 5
Figure 2-7: A Rete representation for r(Y) * s(X>10) * s(X<20) = (X, Y) ... 10
Figure 2-2: Database subnets using MCP ... 23
Figure 3-1; Two-tier client/server model ..., 28
Figure 3-2: Three-tier client/server model ... 29
Figure 3-3: One-to-one and one-to-many publish/subscribe interaction 29
Figure 3-+: RPC communication mechaniSimoccoooiiie v 32
Figure 3-5: Dynamic Management Agent Architecture ..., 35
Figure 4-7: IMCP basic architecture ... e 44
Figure 4-2: 3-tier/2-tier configurationoiiii 47
Figure 4-3; Multi-type communication architectures for 3-tier iMCP 50
Figure 4-4: OMT diagram represents the basic data types of the rule interpreter.......... 56
Figure 4-5 Alpha/Beta objects ..o 57
Figure 4-6: Hypothetical example for coupling the Rete and DN of ATMS ... 58
Figure 4-7: The ATMS deSiZN ..ottt 59
Figure -8 The Rete architeCturec..coooooviii oo v, 60
Figure 4-9: The Rete network for example in section 4.3.1.1 ... 63
Figure 4-/0. Query expression in Java Dynamic Management Agentc........... 64
Figure 4-11: DBTuple structure ..., 64
Figure 4-/2: Middle-tier components” data StrUCLUTEc..oovvveuvivieiee i, 67
Figure 5-/: lllustrate the changes in the dependency network ... TUOROROIION 78
Figure 5-2; Hypothetical example to illustrate the discard algorithm ... 79

Figure 5-3: Main planing steps of the SRGS ..., 85

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Abstract

Coupling Expert Systems with Internet using Monitor Coupling Paradigm
: By
Hussam Omar Saadeh

Supervisor
Dr. Khalil el Hindi

Co-Supervisor
Dr. Moneeb Qutaishat

In the last few years, the network computing has rapidly cvolved and widely used in the Internet
and Iniranct environments, Atiractive new mission-critical and networked economy (or e-conunerce)
applications have cmerged. These celectronic systems create cffcclive, reliable, sccure, and
transactional Intemel business solutions, which cmpower employecs, suppliers, and cusiomers wilh

scrvices and products available on the Internet.

In (his thesis, we realize the imporance of such evolution. We have developed a reasoning
. svsiem that can work cfficiently with database systems over the Internet environment, gaining the
advaniages ol available network frameworks, interfaces, standards, and services. We belief that, this
ncw coupling will introduce new opportunities {or effective nusston-critical reasoning satutions (we
call, e-reasoning). Elcctronic reasoning systems may adhere other coupled electronic solutions (e.g., e-

commerce) for cnhancement, consulting, and supporting decisions,

CQur proposed paradigm is an exiension of the Monitor Coupling Paradigm (MCP} (Hindi.
1994) for coupling ATMS-based expert system with an active databasc system. The MCP was
originatly introduced to maintain the data consislency between reasomng system and the coupled
databasc svsiem. The rule engine of the extended paradigm (that we call IMCP) is designed to be
distributed over (hree-lier network computing architecturc. Considering reliability, scalability,
simplicity, and intcroperability, the svstem network model interface i1s constructed using client/scrver,

publish/subscribe, and disiributed object technology.

The efliciency of the reasoning system is a key issue beyond the success for such paradigm. We
proposc a modified cfficient tightly approach for coupling ATMS and Rete network based on (he
Morgue system and the Hindi system. In different dimensions, an empirical comparison study is
proposed for such coupling system that proves its efficiency among others. The new compromised

approach maintains the main advantages of other systems and avoids most of their drawbacks.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Chapter 1

Introduction

Internet has become one of the most rapidly adopted technology changes to date,
Reaching a total base over 10 nullion users in under three years (Oracle, 1997, a}. It is
considered as an infrastructure for many 24-hour global electronic services over
heterogeneous, distributed, and autonomous environments. Networked economy (or e-
commerce) is the most sensitive and cbmp[ex service that is being developed. Its
importance requires developing and deploying large-scale applications with reliable,
secure, and transactional features.

On the other hand, comprehensive information system has to integrate within its
framework several powerful complementary technologies. Those technologies are
collaborated efficiently to increase system’s capability and meet future demands.
Integrating databases with expert systems has been considered one of the most effective
system’s collaboration.

Brodie (1988) had expected that, “the future computing systems will require Al
and DB technology to work together with other technologies. These systems will consist
of a large number of heterogeneous, distributed agents that have varying capabilities to
work cooperatively”.

In this thesis, our target is coupling expert systems and databases with standard
service-driven network agents. Such agents were developed and deployed as a part of
the public Internet environment. The value of this integration can be noticed in self-
service, e-commerce, and mission-.critical distributed information systems. From such

integration, a new class of collaborated systems or electronic reasoning systems (or e-

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

reasoning) are founded. Their importance gained from dealing with other coupled
electronic mission-critical systems.

In electronic commerce systems, a planner or a consultant intelligent system may
be required on the network to confidant and empower users on their desired choices. For
example, in a stock mart electronic system, users sell and buy shares in more safe and
care if an electronic reasoning system is available for advice. In electronic airline agency
reservation system, a person can eflectively buy a flight-ticket from his web browser,
when an electronic planing reasoning system is available to generate a flight-route that
minimizes cost, time, and some risk factors. Also, for universities' registration process,
students can easily submit proper schedules from their home, using intelligent electronic

registration guidance system.

1.1 Coupling databases and expert systems

Coupling expert systems and database systems has been extensively investigated by
many researchers (Brodie, 1988; Fernandies et. al, 1992; Golshani, 1984; Hindi, 1994;
Simt, 1984) to utilize the benefits of each. Reasoning engine extracts its data and/or
general rules from vast, shared, persistent repository to generate sophisticated inferences.
Two main approaches have been available for coupling ESs and DBSs:

* Loose coupling approach: keeps the expert system and the database separate. Before
reasoning starts, relevant data is retrieved from the database to the expert system
memory space.

e Tight coupling approach: interferes the two systems with each other in bi-directional
interface, so the capability for reaséning-cau be available to the database system or

vise versa.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

From an engineering viewpoint, loose coupling integration is the most suitabie
approach for distributed, heterogeneous, and autonomous environment. However,
typical loose coupling approach lacks the handling of data consistency problem (Hindi,
1994). Due to a database update, the reasoning system that is loosely coupled with the
database may work on out-of-date copy of data that could generate incorrect solutions.
Neither read locks nor periodically polling .can practically solve this problem (Hindi,
1994). Read locks on retrieved data prevent other users from modifying the data, while
the reasoning system is being executed. Furthermore, this method cannot recognize new
inserted relevant data. On the other hand, polling is expensive and requires reasoning
from scratch in every time different data is polled.

Hindi (1994) has proposed a new solution to the data consistency problem by
introducing the Monitor Coupling Paradigm (MCP). The approach is characterized by
using active database system with Truth Maintenance System (TMS) based reasoning
system. TMSs have been used to cache inferences in a dependency network form. The
active database system maintains set of rules dencting and monitoring selected data,
Those rules are automatically constructed and instailed before reasoning startup. Using
POSTGRES alert mechanism (POSTGRES, 1992), when a relevant DML event occurs,
an active rule notifies external program to poll the available changes to the TMS-based
reasoning system. The TMS can directly identify all related inferences and revise its
beliefs accordingly.

For efficiency and to avoid unnecessary costly interaction between the two
systems, Hindi (1994) has used the Rete network in generating queries and active rules
statements. This maximizes the utilization of the best database functionality (join and
select operations) and narrows the selection criteria and active rules affects as specific as

posstble,

All Rights Reserved - Library of Uni‘versity of Jordan - Center of Thesis Deposit

1.2 Extending the MCP for the Internet environment

In order to meet Internet’s challenges, developed systems must be adaptable,

evolvable, scalable, and interoperable, meeting certain agreed upon standards, which are

being used {Johnston, 1996; Oracle, 1997, a & b).

Our proposed system for extending the MCP for the Internet environment has to

be in a form that satisfies the above characteristics. The system network architecture

should include the best of open network standards, and web universal features,

Figure 1-1 shows that the functionality of the rule engine of our paradigm is
distributed over three-tier network computing architecture:

* Data server: is a database system (e.g., Oracle8/) that maintains the data, set of a
predefined general active rules (triggers), transactional queue(s) to retain the changes,
and a rule engine to dispatch the changes to the subscribers.

¢ Application web server: is a middle-tier that embodies the logic and the knowledge of
the reasor;ing system, and running a Java service-driven agent, which receives and
sends requests and replies from and to the other two tiers.

* Universal thin client: is a universal web browser, which downloads the reasoning
system logic and knowledge (as a Java applef) using the HTTP protocol.

The reasoning system requests for a set of initial application parameters, which
they are part of its knowledge domain. e.g., student number in an electronic registration
guidance system, and source and destination in a flight-route planning system. To
retricve remote data from the database, the system builds efficient and simple query
statements each based on a single database relation. These queries are grouped and
transmitted asynchronously to the middle-tier agent using an open distributed object
technoloéy {e.g.,, Java/RMI). The middle-tier agent sends each individual query to the
database server via synchronous query service call (e.g., Java Database Connectivity

(JDBC)) to evaluate and return results data. The returned data are then propagated to

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

the requester (reasoning system). The middle-tier agent retains an exact copy for each
query statement with its subscribers (reasoning systems). The database system (e.g.,
Oracle87) views the middle-tier as a proxy for all connected clients. Any captured change
on the database is automatically forwarded, using transactional queues and a database
rule engine, to the middle-tier in a publish/subscribe computing model. In the middle-tier,
the arrived changes are passed into another rule engine for further filtering according to
the available retained queries. Each connected reasoning system receives only relevant
changes that is of interest and revises its beliefs accordingly using Assumption-based

TMS (ATMS) labeling algorithm.

e rRet:: &
< ATMS
| duta |_, selected duta .
Iriggers - Rete &
e ¥ S
[— N - 11 . ATM
rule | data | ;
engine | Rele &
ATMS
OrocleBi JDMEK agenl browsers
<— selecled data : client/server. Nute : * It is posaible for the same network agent tv attaclh
> mare Lhal one database.
....... » changed data : publish/subscribe. * use CORBA/MMOF instead of JDME/RMI

Figure I-1: Communication mechanisin in three-lier iIMCP

The implementation of the expert system and the middle-tier agent was performed
using Java language. Java development kit and Java dynamic management kit
architectures had been adopted to develop and deploy the system. On the other hand, the
data server functionality is only conceptually designed in Oracle DBMS, but not
implemented. This is because Oracle8/, which has the necessary features for our
paradigm, was recently released.

Many important issues can be discussed on this paradigm: efficiency, security,
quality of services, and reliability of communication protocols. For security me;nagement,
many policies can be identified to restrict data access for authorized clients. This is done

through using proprietary database security features, standard services, secure protocols,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

and other auditing tools. However, security is out of our scope in this thesis. Instead, we
focus on building interoperable, portable, distributed architecture of the expert systems

over the Internet.

1.3 Compromised approach for tightly coupling ATMS with Rete

Netwo rk

A secondary but important goal in this thesis is improving the system efficiency
using the Rete match algorithm in the inference engine, with the ATMS labeling
algorithm. A modified tightly approach is implemented based on the Morgue system
(Morgue and Chehire, 1991) and the Hindi system (Hindi, 1994).

Mahmoud (1997) had empirically proved that the Hindi system is more efficient
than the Morgue system in terms of the time needed, but it requires more memory space
than the Morgue system. In this thesis, we performed an empirical comparison study on
the Hindi system, the Morgue system, and the compromised system. The results show
that, the new compromised coupling approach is fair efficient for reserving space and

reasoning runtime.

1.4 Thesis Structure

The rest of this thesis is organized as follows. In chapter 2, we review related
literature on the ATMS-based reasoning system, and the coupling approaches with the
DBS. In chapter 3, the network computing and Internet technologies are reviewed.
Chapter 4 describes a proposed model for coupling expert system over the Internet using
the MCP. Chapter 5 presents a compromised approach for tight coupling Rete network
with ATMS dependency network. Finally, chapter 6 represents our conclusions and

suggests some future work.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Chapter 2

ATMS-based Reasoning Systems and Databases

2.1 Introduction

In this chapter we review the conceptual design of the ATMS-based reasoning:

system that has the capability to revise its beliefs according to changes have occurred on
its assumptions. Based on this architecture, the mechanism of the Monitor Coupling
Paradigm (MCP) (Hindi, 1994) for coupling reasoning systems and databases was
presented. The MCP is characterized of keeping up-to-date data consistency between the
database and the reasoning system in asynchronous loosely manner. Where, these are
strong demands for such coupling over the Internet in mission-critical applications.

The organization of this chapter is divided in two main sections: section 2.2
describes the architecture of the reasoning system as a Rete-based production rule
system coupled ATMS label algorithm. Section 2.3 reviews the different approaches

adopted to integrate DBSs and ESs reaching to the original MCP,

2.2 ATMS-based reasoning system

Rule-based expert systems have been used since 1970s (Davis etal., 1977) to
represent complex knowledge and to formulate intelligent problem solving skills, for
non-conventional problems, that may require large and adaptive human expertise.

Expert systems can be classified according to the nature of the adopted problem
they intent to solve, including: planning, diagnosis, design, control, and monitoring,

Typical expert system architecture has the following components. User inferface for an

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

easy external accessing. General knowledge represented as a set of rules that formulate
the problem solving. Case specific data that refers to a collection of facts describing a
problem instance. Lxplanation subsystem, which produces how and why explanations,
Inference engine interprets the knowledge, and controls the reasoning process.

In changing and adaptive reasoning environments, special caching mechanisms
called Truth Maintenance Systems (TMSs), can integrate the expert system to record the
inferences. Any modification of the data used to make these inferences automatically is
propagated to the relevant ones and updates their status accordingly. Mamtaining system
truths during reasoning relieves the system from restarting the reasoning process from
scratch every time some data changes,

In the following subsections, we discuss, how a production system architecture can
be suitable representative for the rule-based interpreter, and how the Rete algonthm
(Forgy, 1982) enhances its efficiency. Moreover, the basic ATMS (de Kleer, 19386, a)
architecture is identified, that plays critical role in the success of the MCP. Also we
describe, how the basic ATMS can be tightly coupled the production system in a way
that increases the overall system efficiency,

2.2.1 Production Rule System

Production rule system is a pattern-directed computation model that addresses the
importance of Al search algorithms for exploring effective solutions im modeling human
problem solving.

A production system consists of a working memory (WM), a set of production
rules, and a recognize-act interpreter. The working mem'o.ry contains a set of assertions
or facts that describe the current state of the reasoning process. Each production rule

defines a small chunk of problem solving knowledge as condition/action pairs. The

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

recugnize-act (maftch-select-act) cycle specifies the control structure of the production

system. The system matches available rules to determine the applicable rules, and stores
all applicable rules in a special agenda, called conflict setr. Then, using one or more
conflict resolution strategies (like FIFO, LIFO, highest priority, recency, refutation,
specificity, ... etc.), a preferred instantiated rule is selected and fired. The previous steps
are repeated, till the reasoning system has reached an empty agenda or a simple halr
command is executed.

Production systems are characterized by a set of advantages that make it useful as
an ideal tool for building expert systems, In addition to their simplicity, flexibility,
tractability, and expandability, production system offers a range of opportunities for
heuristic control of search. The system has the ability to use either data-driven (forward
chaining) or goal-driven (backward chaining) search techniques, and the capability to
employ different conflict resolution strategies within the select step of its recognize-act
cycle. Also, the knowledge and the control are completely separated from each other.
This increases the chances of building a domain-independent expert system shell. In this

thesis, we use the term rule-based expert system and production system interchangeably,

2.2.2 The Rete Algorithm 491833

Conventional production systems spend a significant proportion of the processing
time on the match step. To improve the performance of this repeatedly performed step,
the Rete algorithm (Forgy, 1982) is widely used. Sharing and stare-saving are the main
system optimization issues that Rete address. Sharing common conditions across
different productions rules reduces the number of test operations required to do the
match. Unfortunately, this tuning has quite limited affects on the speedup of the system.

As reported by Tambe and Rosenbloom (1992); the utilization of shared conditions has

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

10

improved time needed to perform the match step by a factor of 1.1 to 1.6. On the other
hand, Rete sfate-saving property plays a critical key in the system optimization. Rete was
motivated by observation, that firing a rule usually causes a limited number of changes in
the status of the working memory. Thus, the result of the matching step performed in a
cycle can be used, after a few modifications, in the next cycle.

The Rete algorithm compiles the production rules in a complex network structure,
foads all initial working memory elements (WMEs) in the constructed network, and
starts exploring new instantiation results. The rule interpreter uses predefined criteria for
electing one of these results to be fired. Probably, due to firing a rule, the WM s
modified by adding a new derived inference or by discarding an existing element.

Consider, for example, the following rule;

if (YY) ~ s(X>10) » s(X<20) then z(X, Y).
Where, r, s, and z are three predicates, and X & Y (capital letters) are variables. The left
hand side of then is called the premise (or condition} and the right hand side is called the

action (or consequent). Figure 2-1 below represents the Rete network for above rule.

< The root node

* type check nodes

< geiem

and node

L fFrmem
- and node
G- Paem

Figure 2-1: A Rete representation for: oY) #s(N>14) ~ s{x<20) » z(X. Y)

The roof node receives the working memory elements (WMEs or tuples) of s and
predicates, and propagates a copy of each one to its successors. A successor node (1.€., a
type check node as in 7 and s nodes) tests the predicate’s type for the arriving WMESs and

passes all elements that have a proper type to its successors (mostly, /~const nodes) and

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

11

discards all the others. A r-consf node (e.g., X<20 and X>10 nodes) forwards all WMEs
that succeeded satisfy certain conditions into a special cache called @-memory node. An
and node checks two WMES (as an input) against a complex consistency condition, joins
every pair of WMEs that satisfy the condition, and forwards a copy of the joined element
to the following A-memory node. A f-memory node stores a copy of the arriving
element and forwards it to the next node (which might be another anid node). Every -
memory node represents a production rule. Any tuple that succeeds in reaching a P-node
are cached as instantiation results in the conflict set to deduce new inferences (as in
above example, z s tuples).

Note that shared conditions are encoded once in Rete as a common path between
two nodes. The state saving is realized by storing partial results of the match in the
memory nodes to avoid re-performing the match from scratch,

It is worth mentioning that, there i a simple analogy between the operations
performed by a Rete-based production system and a relational database system. 7ype
check nodes correspond to the relations in the database. WMEs represent database
records (or tuples). 7-const nodes correspond to selection criteria. And nodes are no
more than database join operation. The modification on the WM, as a result of a rule

execution, is just a database insert, update, or delete operation,
2.2.3 Basic ATMS

Truth Maintenance Systems (TMSs) are useful for belief revision and as control
mechanisms. They have been used in conjunction with a problem solver in adaptive
reasoning systems to revise the current belief state due to environment changes without

having to re-do the whole reasoning process every time some data changes.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

12

TMSs accomplish this objective by recording all reasoning steps in form of
dependencies. This property makes the system useful for database update, constraint
satisfaction (avoiding re-evaluation of any constraint on the same data), and monitoring
in dynamic environments (e.g., robots) (de Kieer, 1986, b).

Three main types of TMSs were developed: Justification-based TMS, Logical-
based TMS, and Assumption-based TMS. In our work, we have adopted the
Assumption-based TMS (ATMS). However, many of the developed techniques can be
easily adapted to other TMSs. The ATMS can handle multiple-context for incremental
systems on parallel. This issue is achieved by exploring all solutions simultaneously,
dealing with inconsistent knowledge, and avoiding the need for backtracking (de Kleer,
1986, a).

The ATMS algorithm assigns a propositional atom node for each problem sotver
datum. The problem solver designates a subset of those nodes as assumptions that are
presumed to be valid unless there is evidence to the contrary. A set of assumptions is
called an environment. All inferences of the problem solver are registered in the ATMS
as justifications. The justification has three parts: a consequent node, antecedent nodes
that support the inference, and a problem solver description. Moreover, a node (n) is said
to hold in the environment (E), if (n) can be derived from (E) and the current set of
justifications (1), i.e. £ J |—n Every ATMS node (n) is associated with a set of
environments, that is called the label of (n). The node label should be consistent, sound,

complete, and minimal. An environment with all its derivable ATMS nodes is called the

ATMS context. Such that, context(£) = { n | n € N 5(E J|—n) }. ATMS dependency

network is a network constructed using ATMS nodes as vertices and justifications as

edges.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

13

The ATMS node is the basic data structure inthe ATMS, It has the following
fornt Y <datum, label justification™. Where datum is the problem solver datum,

fabel 15 a set of environments in which the node holds, and justification is a list of
inferences that support the node. According to the form of labels and justifications of the
ATMS nodes, nodes are classified into;

* A Premise node; has a justification with no antecedents, 1.e, holds universally

(always true). Premise’s label is a single environment with no assumptions.
e.g Yoo <P A 10))>
* An Assumption node: i3 a node whose label contains a singleton environment

mentioning itself. In general, Assimption node ts denoted in uppercase letters and can
be justified. e.g. vao <A, {{A} {B, C}. {{4), (d)}>.

* An Assumed node: mentions only assumptions in its justification sfot. In other words,
it is derived by immediate usage of one or more assumptions. The assumed node is
preferable for defeasible problem-solving nodes. Assumption nodes are created using
assumption-assumed-node pairs, Thus, no direct dealing with assumptions to prevent
having ever justified asswumptions. e.g. <s, {{AL{B}}, {(A), (B}}>.

* A derived node: all other valid nodes are considered as derived nodes.

e.g. Vv <w. {{A, BY {C} {LI} {(B), (c. D}>

* A comtradiction node: is a special node type that can be proven from inconsistent
environments. Inconsistent environments are also called nogood environments,
eg Yo <L {}, {(A,B),(C,D), ..}>

Recall that, during reasoning process and label updating algorithm, any ATMS node can

be dynamically converted from one type to another according to its label and

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

14

justifications list. However, reasoning system has to avoid such behavior to increase its
performance.

The ATMS procedure performs three basic actions. Creating an ATMS node for a
problem-solver datum, creating an asswmption node, and adding a justification
(inference) to the dependency network. In the last operation a significant processing time
is consumed to propagate label-update through all relevant ATMS nodes to reflect their
current status. This computation is carried out in five steps.

» First, a new label ts computed for the consequent tuple of the current justification
with respect 1o the label of each justification antecedent node. The label consists of
all permutattons of union one environment from a given antecedent with the others.

e Second, removing inconsistent and subsumed environments from the computed label.

Third, adding the old label of the cansequent tuple to the computed, and re-applying

the second stcp again.

Forth, if the nodeisy, (i.e., inconsistent node), then, each computed environment is

considered as a nogood. Traverse all environments to discard all these that are

superset of the discovered nogood environments.

Fifth, for non-y, nodes, propagates label-update for each consequence node that has

a justification, which mention the node whose label has changed.

The problem solver has to generate all inferences in terms of justifications, and
pass them to the ATMS to reflect the current reasoning status. However, justifications
must be precisely constructed otherwise unexpected ATMS errors may occur. If the
problem solver fails to list all proper justification of a node, then the node’s label will be
either too general or too specific. de Kleer (1986, b) suggests that the problem solver

must be encoded with a set of constraints and controls. These controls look like rules,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

15

and are called contradiction consumers (or rules). Contradiction rules’ task is to find
out nogood environments in an early stage of the reasoning process to accelerate the
overall process. A nogood environment represents a set of inconsistent assumptions that
cannot be hold together. Note that a superset environment of a nogood environment is

also nogood.
2.2.4 Coupling ATMS with a Rete-based production system

In this section, we will review several coupling architectures that integrate
production system (as a problem solver) with the ATMS. This integration establishes a
new flexible system that has the capability to revise its current beliefs in dynamic
environments, and provides an interoperable interface to communicate effectively with
other powerful sources of changing data such as database systems.
2.2.4.1 ATMS loosely coupled production system

This method which was introduced by Morgue and Chehire (1991), integrates a
production system and ATMS in the select step (conflict resolution) of the inference
engine. The production system transmits justifications and assumptions to the ATMS.
The ATMS computes the fabel of the justification consequence. If the label is empty (has
no environments), then, no more information is obtained. So the instantiated rule that
belongs to the transmitted justification is discarded (not executed), and another one is
selected to be executed.

In loose-coupling approach, contradiction rules have the highest priority for
execution. Contradiction rule can find out the inconsistent (i.e., nogood) environments in
an early stage to reduce unnecessary expensive operations. For example, suppose the

system knowledge has the following two rules:

A: ifq(1) » p(1) then L,
and B: if q(X) * p(X) " r(Y) » w(Y) then z(X, Y).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

16

If rule B is executed before rule A, then the joined tuple “g(7) ~ p(1)” has to be matched
with all elements in predicate r, and the partial results have to be matched with all
elements in predicate i, and infer new derived facts about predicate z, that may also be a
constituent of another rule, and so on. 1n a later stage, when rule 4 is executed, then we
will discover that many of the above operations were performed unnecessarily, and their
results must be discarded from the Rete and the ATMS.

In spite of the its simplicity and modularity, this technique has two main drawbacks
(Morgue and Chehire, 1991). A lot of work is done repeatedly by the ATMS labeling
algorithm. Common patterns across different rules are not recognized by the ATMS,
Thus, the ATMS does not benefit from the Rete sharing characteristic. Also, many
unnecessary operations are still processed by the match operation, even if the labels of
the partial resulis are empty. This is very clear from the previous example, when an
expensive and unnecessary join operation in the Rete is performed on “q(1) * p(1)”.
2.2.4.2 ATMS tightly coupled production system — the Morgue System

To cope the previous drawbacks, coupling production system and ATMS has to be
at the match step instead of select step (Morgue and Chehire, 1991). The Rete match
algorithm with some modifications is used. For partial joined results (that are located in
f-memory nodes), new ATMS nodes and partial justifications are introduced.
Furthermore, each stored tuple (simple or partial) in the Rete attaches a label. Due to
rule firing and join operation, justifications and partial justifications are constructed. The
label of the consequent tuple is computed. Ifit is empty, then, no further matching is
done. Otherwise, the Rete propagates the tuple down, not only for joining, but also, for
label computations.

e.g. if p(X) * q(X) * t(X) then w(X).
if p(X) * q(X) » s(X) then z(X).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

17

The Rete replaces these two justifications by the following three partial ones:
P ™ 4(X) > N(XY), NCX) A 1(X) = w(X), NX) ~ (%) — 2(X).
where, each partial joined tuple has an intermediate label located within its datum.

The Morgue system discards, during match algorithm, all tuples (facts) with empty
labels, to reduce the cost of the join operations and labeling computations. Similarly,
when a nogood environment is discovered, the system follows all relevant tuples for
label-update, and removes all tuples that became with empty labels from the Rete
memory nodes.

The main drawback of this approach is that, the system maintains labeling for more
nodes than the loose coupling approach. In somehow, sharing the label for the common
patterns (using the sharing property of the Rete algorithm) reduces this complexity.
Moreover, this approach uses an extra bookkeeping space to optimize label updating and
contradiction handling algorithms. First, each tuple (simple or joined) records the Rete
memory nodes where it is stored. Second, each environment records all tuples (simple or
joined), in the label of which it appears. Third, each tuple maintains the links to other
tuples through partial justifications. In addition, contradiction rules still have the highest
priority and are fired as soon as they have been instantiated.
2.2.4.3 ATMS tightly coupled production system — the Hindi System

Hindi (1994) noticed two main serious drawbacks in the Morgue system. Whenever
a new environment is added to a tuple (which frequently happens, since ATMS
apphications require reasoning in multiple-context), the system has to re-join that tuple
with a]l'tuples that are located in the other input memory node. Because, if the output
joined tuple has been discarded when its label was empty, then, the re-join operation is
the only way to re—generate-such tuples again, to check if their labels have become non-

empty. The second drawback, re-generating previously discarded tﬁples, requires re-

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

18

performing the match on these tuples and all relevant ones from scratch, since discarding
a tuple also discards all tuples that the tuple is a constituent of Moreover, as a result of
adding a new environment to a tuple, if that tuple is re-generated with non-empty label,
then the system may re-perform an expensive re-join operation, and re-propagate the
work of matching on the other output memory nodes, which already has been computed.

Hindi (1994) realized Morgue’s drawbacks and designed a new improved tight
coupling approach. Hindi’s improvements are based on caching tuples with empty labels
instead of discarding them. Tuples with empty labels are moved to a special inactive part
of the Rete memory node, that is called the OUT-part. While, the active memory part,
which is called IN-part stores all tuples with non-empty labels. The tuples in the IN-parts
only are involved in match step. The Hindi system uses time stamp policy in the Rete
match algorithm. The label is computed for each joined tuple. If the label is empty, then
the tuple is placed in OUT-part after it is stamped with a special lowest unused time
(e.g., -1). Later on, when it becomes with non-empty label, it will be joined with all
opposite available in-tuples. On the other hand, the tuple with non-empty label is placed
i the IN-part after it is stamped with the current system time. The Rete propagates the
match as usual.

When a nogood environment is discovered, tuples with labels that have become
empty are moved to the corresponding OUT-part re-stamped with the current system
time. The system time is then advanced, so that, it is possible to identify all new tuples
that are created while those empty-tuples are in QUT-part.

When adding a new environment (due to receiving a new justification), the tuple has
only to follow the links of the dependency network of the ATMS to get the other related
tuples for label-ﬁpdate; without having to re-join tuples. If an empty tuple becomes non-

empty one, then, it is quietly moved to the IN-part. Then it is matched with other tuples

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

19

that were inserted while it was in the OUT-part (can be determined using time stamps),
and following its old links for labeling the existing relevant tuples.

As noticed, the Hindi system does not perform an actual release operation on the
discarded tuples. Thus, to reduce the memory requirement for the system, Mahmoud
(1997) suggested that we could switch from the Hindi to Morgue systems once the

memory required for the inactive parts become so large.

2.3 Expert systems and Databases coupling approaches

In this class of integration the expert system is used to perform intelligent
reasoning processing on information being stored in, and retrieved from the database
system. Many applications including office automation, statistical system, and military
command and control, require this combination of technology {Smit, 1984). Approaches
in this area are classifted into two main categories. Tight coupling approaches and loose
coupling approaches. Researchers in loose coupling approaches interest on constructing
interoperable interface between two existing systems. While in tight coupling
approaches, the interest has been concentrated on building single and efficient system
that has the capability of storing and retrieving data, and deriving new inferences using
shared and persistent rules.

Three main subjects are discussed below. Loose coupling approaches, tight

coupling approaches, and monitor coupling approach which combines some of loose and

tight features.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

20

2.3.1 Loose coupling expert systems and databases

The reasoning system in this category accesses the database system using external
database quernies, Retrieved data is processed by the memory-based reasoning system
without any database feedback. The connection between the two systems is temporarily
established only to extract the relevant data either at run or compile time.

The efficiency of the loose coupling paradigm is proportional to the amount of data
retrieved and number of times a database is accessed. However, most of the loose
coupling techniques were concerned with a PROLOG interpreter and a relational
database system (or PROLOGH++ with object-oriented database system), PROLOG facts
correspond to tuples in databases, predicates to relations, rules to views, assert/retract to
insert/delete, and so on.

Hindi (1994) mentioned a set of drawbacks of using typical loose coupling approaches:

e They discard the implications of data consistency problem, which may make them
produce incorrect solutions. The passive connection model between the two systems
does not recognize the occurrence of any modification on the retrieved data in the
database system. Neither read locks on the retrieved data nor periodically polling
can solve this problem. To protect data against updates, using read locks on the
retrieved data, for long runtime, prevents other uses from modifying the data, while
the reasoning system is being executed. Furthermore, this method cannot recognize
the occurrence of a new inserted relevant data. On the other hand, periodic polling
for data for refreshment is expensive and requires reasoning from scratch in every
time different data is polled.

¢ They lack the ability of handling knowledge persistence and sharing.

o They fail to process large retrieved data set with partitions.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

21

2.3.2 Tight coupling expert systems and databases

The reasoning system in tight coupling approaches is an integral sub-component of
the database system with a transparent interface. It is also possible to tightly couple the
reasoning system with the database by extending the knowledge base system to support
some DBMS features, which include concurrent control, persistency, transaction
management... etc. In both cases data and rules are persistent and shared.

Tight coupled approaches are either use deductive rules that has the ability to
derive new information, or active rules, which provide reactive behavior due to
occurrence of a database events (e.g. insert, update, or delete).

In deductive relational database systems (DRDSs), the system is either constructed
from two complete languages (e.g., PROLOG with RDBMS), or finely tuned formalism
based on converging specifications of two particular engines (e.g."Datalog) (Fernandes,
1992). While deductive object-oriented database systems (DOODs) (for review sec
(Sampaio and Paton, 1997)), are build by extending relational deductive languages (e.g.
CoceptBase, Logres+), integrating deductive with object-oriented imperative language
(eg. ROCK & ROLL), or reconstructing new object-oriented logic language (e.g.
FLORID).

However, deductive database systems lack high level programming features, such
as memory variables, call external procedures, 10 functions, and control structure. Also,
the research on DOOD model is not fully matured, only a small set of DOODs is released
as commercial products (e.g., Validity) and many remain research projects. On the other
hand, using active rules to simulate com];blex deductive rules affects the system

performance.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

22

2.3.3 Monitor Coupling Paradigm

Hindi (1994) has introduced a new paradigm to couple the database with the
expert system, called the Monitor Coupling Paradigm (MCP). The MCP is characterized
by using rules in both rule interpreter and database system in a loose communication
model. The proposed paradigm addressed the data consistency problem, data
partitioning, and systems’ role distribution. With respect to the tight coupling approach,
the system also offers sharing and persistency for some special rules.

The Monitor Coupling Paradigm relies on the capability of the active rules to
monitor data against certain events and provide two-way communication, Not only the
application can retrieve data, but also the database can send data to the running
application, Also the system is characterized by integrating a TMS with a forward-
chaining reasoning system. Before the system starts the reasoning process, all relevant
data are retrieved from the database using external data queries. When a modification on
the extracted data or an insertion of new relevant data take place, active rules notify the
reasoning system about their occurrence. The TMS component of the reasoning system,
in turns, receives those changes and tries to identify all relevant inferences and revise
their states accordingly.

The functionality is distributed between the database system and the expert system
in a way that increases the overall system performance. Not only the database role is
focused on storing and retrieving data, but also the database participates in performing

optimized join operation where possible, and emits all relevant changes to the expert

system when they are occurred. The MCP uses the Rete network to generate the.

database query commands and the associated active rules. After the Rete network is

constructed from the available rules, the system identifies all partitions (or subnets) in the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

23

network that only deals with database predicates. Those subnets are aitomatically
mapped into the corresponding database queries and active rules.

The MCP uses POSTGRES DBMS (POSTGRES, 1992) to generate database
commands, since POSTGRES active rules define an alert mechanism (listen and notify
command) that is necessary in the paradigm. Notify command on a given relation alerts
the running program that is keeping an eye on that relation (through issuing listen
command). A secondary relation is required in POSTGRES to retain the changes for
each base relation.

e.g. define rule ri is on append to testl do

append testla (i=new.i)
notify testla

A relation festia is a secondary relation for sess/ that has one attribute (7). When a
new tuple is appended to fest/, the system notifies running programs, which are
currently monitoring the relation rest/a.

It is worth to mention, that Hindi (1994) mechanism has defined also for non-
monotonic reasoning systems (for if...unless...then... rules), which is out our scope in
this thesis. However, to illustrate the MCP mechanism of monotonic case, consider for
example, the following rules:

P1:ifdb_ql(X>50,Y), db_q2(X, Z>25) then ...
P2: ifdb_q1(X>10,Y), q3(Y>20, Z) then ...

Figure 2-2; Database subnets using MCP

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

24

Two subnets are marked on the figure 2-2 as A & B. Subnets only deal with
database predicates in a form that maximizes the database role in the select and join
operations and minimizes the number of active rules and retrieve commands. The system
generates the retrieve commands using POSTQUEL query language (which is an
extension to the Quel query language). For example to extract subnet A;

refrieve unique (Tql.all, Tq2.all) /f where “unique” tag used to discard
Jrom Tql inql, Tq2 in q2 /[any duplicate retrieved tuples
where Tgl. X > 50

and Ty2.Z > 25

and Tyl X = Tg2. X

To generate the corresponding active rules, two secondary relations are required to
alert the reasoning system with the changes. One for inserted tuples and the other for
deleted tuples, where updated tuples are treated as deleting old values and inserting new
ones. For each relation in a subnet, the system has to generate four rules: on-delete, on-
append, on-replace for old values (equivalent to on-delete rule), and on-replace for new
values (equivalent to on-append rule). For example, the following two rules monitor the
tuples deleted from relation (¢/):

for subnet A: define rule deleted gl 1 is on delere to gl

where curremt. X > 50 do
append deleted P (curreni.all, q2.all}
where current. X = q2.X

and 1g2.2 > 25
notify deleted Pl

for subnet B: define rule deleted _qi 2 is on delete 10 g1
where ctirvein. X > 10 do
append deleted _alpha3 (current.all)
notify deleted_apha3

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

25

2.4 Summary

The Rete-based production rule system is considered as an efficient, flexible
architecture in modeling human problem solving. Tightly coupling the ATMS labeling
algorithm with the Rete-based production rule system offers, to the produced system, the
ability to revise its beliefs when some data changes, and the switching-free mechanism
between inconsistent solutions in multiple-context problems.

On the other hand, different approaches could be effectively proposed to integrate
the database system with the reasoning interpreter, to gain the benefits of each. The
integration mainly has been performed either tightly as in deductive database systems,
loosely using demand-driven communication model, or monitory relies on event-driven
model. The last approach, as it was called the MCP, is characterized by coupling TMS-
based reasoning system with active DBMS. In the MCP, the database system
responsibility not only concentrated on the database selection, but also on publishing
relevant changes to the listening external systems. In contrast, the ATMS-based

reasoning system has to receive those changes and revise the system beliefs accordingly.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Chapter 3

The Network Computing and the Internet

3.1 Introduction

In this chapter, we review the evolution of the Internet computing technology that
has become quietly matured for thin clients (i.e., browsers) to run reliable, secure,
transactional, and dynamic programs. That evolution (or even revolution) permits
reasoning systems (i.e., complex applications) to be developed, deployed, and integrated
over the Internet environment. The Internet computing technology was started with
limited capabilities such as accessing static pages, sending electronic mails, publishing
news, and performing non-behavior controls. But today the technology is characterized
with the ability to run behavior scripts and the use of the full power of programming (i.e.,
Java applets).

Java is an object-oriented, portable, networking language that was mainly designed
for the Internet behavioral applications. Complied Java applets have the capability to be
downloaded from web servers and run over the Java Virtual Machine (Java VM) of the
client’s browser. However, creating efficient applications or reliable mission-critical
systems requires developing different modules, libraries, and utilities over the available
network with different interfaces. Also for completeness, those applications could
collaborate with other existing legacy systems (Johnston et al.; 1996).

The integration challenges for different components in distributed, heterogeneous
environments are carefully addressed, managed, and controiled in distributed object

technology. Distributed object technology combines object-oriented features with

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

27

distributed systems development. This technology intents to arrive to a seamless
integration between application components by offenng data encapsulation,
polymorphism, and interoperable interfaces.

Using open standard TCP/IP-based distributed object protocols (such that, I10P
and RMI) and their services with already available protocols on the Internet (e.g.,
HTML/HTTP), increases the chances of offering behavioral interfaces on the Internet.

In the following sections, we describe related network issues for communication
mechanisms, which are currently available either on the chient side, web application
server, or database system. Those issues are used in the next chapter in which we

formulate the MCP for the Internet environment.

3.2 Communication Computing Models

' Due to the evolution cljf high-speed and inexpensive personal computers, the
systems architecture have been migrated from expensive, large, centralized mainframes
to economic, reliable, expandable decentralized networked machines. Many
communication models have been introduced to structure a meamingful connection from
sender to receiver over networks. Client/server, publish/subscribe, workflow, peer-to-
peer, and static and roaming agents are just examples of such communication models.

A communication model must guarantee the delivery of transferred messages in a
meaningful format. Losing messages or receiving the same message twice might affect
the semantic of messaging model. Protocols can transmit messages using either at-least
‘once semantics, at-most once semantics, best-effort semantics (i.c., guarantee nothing},

or exactly-once semantics. Where the last is the ultimate and could be costly to achieve.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

28

In this thesis, we only concentrate on the architecture of client/server and

publish/subscribe models. Illustrating their mechanisms, features, and variations.
3.2.1 Client/Server Model

Two cooperated processes on the same machine or on two different machines are
connected through two-way communication. A request is initiated from a client process
to be processed by a server process. The server offers set of services to the users (or
clients). The client requests a given service from a certain server. During request
processing, client can either block till the reply is returned in synchronous mode or
. continue executing in parallel with the request processing in asynchronous mode (see

figure 3-1).

reguest

Client Server
reply

Figure 3-1: Two-ticr client/server model

In order to send a message from client to server, the client has to know the service
address on the server. The model can either use hardwire machine address and process
identifier, logical process identifier, or an ASCII name (Tanenbaum, 1995).

Client/server model can be extended from a two-tier to a three-tier architecture. A
three-tier architecture increases system scalability, reusability, manageability, and
efficiency. Moreover, three-tier architecture decreases cost of development, deployment,
and maintenance. As shown from figure 3-2, this network computing architecture, which
has been adopted for the web applications, is composed of a data server as a back-end
tier, an application server as the middle-tier, and a thin cliént as a front-end tier, Clients
only own a simple set of programs, which mainly concentrate on building user interface.

Most of the application logic is located in a centralized application server as services.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

29

Clients request the application server for those services, which may in turn access the

data that are stored and managed on the connected database server.

requesi t i
Thin Application Data

Client Server Server
reply reply

Fignre 3-2: Three-tier client/server model

3.2.2 Publish/Subscribe Model

Unlike client/server architecture, publish/subscribe interaction is an event-driven
model rather than a demand-driven. Publish/subscribe model transparently decouples the
communication between processes without being directly connected to each other.

In the model, two types of entities are identified (see figure 3-3):

e The publisher: produces an event data as a message to a communication channel or
information bus broker. Publisher responsibility is to create an event in an independent
manner of where and when the event 1s dispatched.

» The subscriber: that receives (or consumes) event data from the associated channel or
message brokers. 1t only consumes messages matching its interest. Subscriber is _a!so
unaware of how tle received data is published.

The communication between publishers and subscribers is anonymous, no direct
connection-oriented communication between them. On the other hand, the form of the
interaction between applications in publish/subscribe model can take unicast or multicast

communication nmodels.

ubscribe publish
publish subscribe
subscribe” |

Figure 3-3: One-lo-one and one-to-many publish/subscribe interaction

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

30

However, Messages in channels or information bus brokers could be further
filtered using one of the following transparent addressing modes:

e Subject-based addressing: publishers associate with each produced message a subject
name. Subscribers register their interest on a specific subject and receive only all
messages associated with that subject.

o Content-based addressing: publishers produce structured messages (i.e., messages
with attributes). Subscribers register their interest using filtering criteria. A dispatch
engine has to evaluate each published message on the available filters to determine
which message must be sent to which registered subscribers.

Pull and push models have been defined as applicable approaches to initiate event
communication between producers and consumers. Pull model or synchronous
notification, allows a consumer of event to periodically request the event or block until
the event is arrived. While, push model or asynchronous notification, permits a producer
of events to transfer the event automatically to the subscribers. Subscribers can register
callback functions in the dispatch engine, When messages are produced, the engine
immediately invokes the 66rresponding callback functions to be carried out on the
interested subscribers.

Publish/subscribe model has been originally evolved using real world trading
broker applications called Message-Oriented Middieware (MOM). TIB/Rendezvous
(TIBCO, 1997) is one of most powerful communication tool that uses exactly-once

reliable delivery services for subject-based publish/subscribe model.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

3

3.3 Distributed Object (Component) Technology

It is widely believed that the next generation computing systems will consist of a
set of distributed component-based systems. An application is a set of collaborated useful
pieces (or components) that can be operated and accessed across different hardware,
operating systems, networks, and languages. Bringing this technology to the Internet,
enhances the nature of web-based and client/server network computing. Systems could
be efficiently partitioned across the network in components fashion (or distributed
objects) to utilize the network resources without being aware on the type of the running
operating system and the available hardware architecture.

Distributed object technology has evolved through combining the procedural
distributed technology with the object-oriented paradigm. The resulted technology (i.e.,
distributed object technology) enhances Remote Procedure Call (RPC) with data
encapsulation, object polymorphism, and inteioperable interfaces. However, objects
could be large and complex components that were implemented using non-object
oriented languages (e.g., legacy systems). In RPC, a client application calls remote
procedures as if they were locally running, through hiding communication complexity.
Remote procedures in the client side are represented as client stubs, which are linked
with running local libraries. At runtime, client stubs are executed due to ordinary call
from the client program. The client stab packs called procedure and its parameters into a
binary message through marshaling operation, and sends that message as a request to the
remote server. The server receives the message via another server stub, unpacks the
calling statement, and dispatches the call to.the actue'll server process. Execution result is
returned back using the same manner (Tanenbaum, 1995). The mechanism of RPC is

illustrated bellow in figure 3-4.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

32

Client. Server
=5+ 1]
-~ .
appi. stub stub ervice
rasult N ,\ résult
pached call
packed resull

Figure 3-4: RPC communication mechanism

OMG CORBA, MS D/COM, OSF DCE, and Sun’s Java are the most widely
accepted distributed frameworks. The architecture of Sun’s Java and OMG CORBA
(OMG, 1998) are discussed in the following subsections. Where, CORBA is a
specification, which can be implemented in Java, and both are a platform independent.
Java is a portable language and CORBA is an interoperable specification.

3.3.1 OMG CORBA

Common Object Request Broken Architecture (CORBA), is an Object
Management Group (OMG) specification that is supported by over 800 members (OMG,
1998). OMG was founded in 1989 to provide common object oriented gridlines for
application development, OMG specification is based on a conceptual infrastructure
called the Object Management Architecture (OMA). The OMA defines the framework
by which the interoperability goal of matured components (application objects) can be
achieved. CORBA reference model that defines the OMA, is divided into four main
levels:

1. ORB: Object Request Broker enables object to transparently make requests and
responses in distributed environments. i.e., the RPC mechanism for CORBA.
CORBA has defined a descriptive language to represent the external format of
interfaces between objects (i.e., data types and method prototypes), called the
Interface Definition Language (OMG IDL). OMG IDL obeys the same rules (i.e,,
syntax and semantic 'rules) of C++, and can be translated during implementation of

application objects in a predefined mapping to Java, C++, C, COBOL, ADA, or

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

33

Smalltalk. Methods in CORBA are either executed in best-effort semantics, or
exactly-once semantics. Also, method calls can run in synchronous, asynchronous, or
deferred synchronous modes. Using OMG IDL, requests and replies are constructed
in CORBA ORB using dynamic or static stubs. With no actual copy, clients identify
remote objects through an opaque handle object called Object Reference,

To guarantee the interoperability between different vendor ORB’s implementations,
CORBA uses a set of APIs or internal conventions to support inter-ORB bridge that
ensuring the semantics and contents from one ORB to another. Also, CORBA
identifies a standard general transfer protocol to standardize data representation and
message internal formats. Where, CORBA TCP/IP-based transfer protocol is called
Internet Inter-ORB Protocol (110P).

. Object Services: within the system framework, objects can extend their functionality
by supporting collection of standard packages. These packages or services are
considered as components with IDL-specific interfaces. They support naming
bindings, persistency, transactions, objects life cycle, security, concurrency control,
pull/push event models through powerful communication channels, externalization by
recording the object status in a stream of data, and others. Also, an interoperable
interface for a query service has been proposed that supports general manipulation
operations: selection, insertion, update, and deletion. The query service is applied on a
collection of objects using immediate evaluation or a more powerful management
mnterface that increases the chance for optimization, monitoring, and frequent query

execution.

3. Common Facilities: are collections of higher level services that many of applications

may share. Also, standardization of the interface of those products increases their

interoperability. Common Facilitatés can be classified into User Interface, Information

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

34

Management, Task Management, Services Management, and set of domain-specific
market facilities. Specific market facilities support various market segments such as,
health care, retailing, manufacturing, and financial systems.

4, Application Objects: are 1DL-interfaces components specific 1o end-user
applications. Application objects are based on extensive use and reuse of object
services and common facilities, which increases application interoperability and
portability.

3.3.2 Sun’s Java

Distributed object technology in Java is modeled within the language itself. Java is
a lightweight, simple distributed interface model compared to CORBA. However,
CORBA interfaces and services are more powerful and reliable.

Java Remote Method Invocation (RMl) is a Java specific RPC mechanism. Java
RMI interacts with two types of object parameters, remote and non-remote objects.
Remote arguments are passed by reference, while non-remote objects are passed by
copy. Packing parameters is done using Serializable protocol. lava Serializable protocol
gets copy of objects’ status (i.e., fields) in a binary serial message, writes the serial form
on the available output stream with meta annotations, and restores that message into
local proxy classes. Java downloads non-available proxy classes using annotations and
perdefined network loaders.

Each remote object is bounded with a name in server’s special registry. Using
URL-based name, clients can lookup for the reference to that remote object. Registry
service is similar to Naminé and Trader CORBA services.

CORBA can use object life cycle service to handle allocation and de-allocation of

resources, On the other hand, Java RMI uses Distributed Garbage Collector (DGC)

concept, which is similar to Java VM local Garbage Collector. DGC maintains al.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

35

reference to each remote object. To access remote objects, clients have to request for a
lease {i.e., period of time). Client’s RMI responsibility is to renew the lease before it has
expired. When the used lease is expired, DGC assumes the client reference is no longer
alive. DGC purges the remote object when no one is referencing it.

Since Java is a programming language, a set of built-in services is available as a
part of the language itself Java JDBC is a set of standard APIs available as SQL Query
service. Java Listener/Event model supports publish/subscribe local event communication
model.

On the other hand, many separate open standard services are written to be run on
the Java VM. In addition to the Java portability, those services also increase the
application interoperability. Java Dynamic Management Agent is one of a flexible,
lightweight, service-driven network component model. The agent dynamically
encapsulates, configures, and activates a set of needed services, and handles requests to
and replies from the managed services with protocol-independent interfaces.

Dynamic agent architecture is composed of the following components (figure 3-5).

Agent Clien
nennat —3

object flapler Adnpter
— jﬁ-"\

M-beans I:
— VM

“heans

normal
abject

|
VM CMF

Figure 3-5: Dynamic Management Agent Architecture

¢ Core Management Framework (CMF): is the backbone object that registers all

services and resource objects. CMF controls the accessibility between resource

objects and services. The accessibility of objects can take a client/server or

publish/subscribe models.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

36

* Services or resource objects (M-beans): are managed objects that implemented in a

| form of components that conforms to Java Beans design patterns. The design pattern
determines a simple standard form of objects’ properties, actions, and events. Each
managed object in CMF is assigned to a string name to uniquely identify it. Resources
and services can be dynamically deployed and configured in the agent to be managed.
The architecture supports a set of perdefined services includes data repository, meta-
data, filtering, relationship, library loader, bootstrap, launcher, scheduler, alarm clock,
attributes’ monitoring, discovery, and cascading agents.

» Adapters: are managed components, which provide a transparent communication
between managed objects and external applications. They include RMI, HTTP/TCP,
HTTP/UDP, HTTP/SSL, HTML, IIOP, and SNMP. Muitiple-protocol support
feature of the agent architecture has implemented the CMF, services, and resources as
protocol-independent. The agent to be accessit’e it must include at least one adapter.
Also, managed object cannot be accessed through adapters unless it was registered in
the CMF.

¢ A client-bean (C-bean): is a stub object that represents a remote managed object in
the client side. Client performs operations on c-bean which they are automatically
propagated to m-beans. With the same concept, events that are emitted (published) by
m-bean are directed through CMF to the corresponding c-bean using similar interface
to the Java Listener/Event model. It is worth to mention, that the task of c-bean does
not clude parameters marshaling or any communication operations, which are the
adapters responsibilities. C-beans are considered as a level for hiding the complexity
of building requests on the corresponding m-beans through adapters’ APIs.

Therefore, without loosing communication transparency, m-beans can be accessed

directly through adapters without generating the corresponding c-beans.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

37

3.4 Oracle8i — database system for Internet

Oracle8/ is designed spe.cial]y to support database applications on the Internet.
Oracle8/ offers set of valuable features that increase performance and manageability of
web-enabled applications. Oracle8/ captures the importance of electronic commerce and
mission-critical systems, by providing many opportunities for developing powerful
procedure-based or component-based information systems for Internet and Intranet
applications. For that purpose, Oracle engine has been integrated with various network
technologies such as, messaging systems, Internet file system, and thin client support.
The engine implements efficient Java VM and CORBA ORB, and supports HTML,
XML, SSL, lIOP, ... protocols.

3.4.1 Java tighdy integrated with Oracle8i

Java has being considered as a standard behavioral language for Internet. Oracle8/
realized this fact by implementing a scalable, reli‘able Java VM within the database server,
Oracle adopts Java as a choice for developing distributed applications based on three
initiatives (Oracle, 1997, b):

¢ Implementing various optimized JDBC Oracle drivers through different network
architectures.

» Supporting SQLJ as an open standard for embedding SQL inJava SQLJisa
simple compile-time call-level library that enhances JDBC API with a static
analysis and type checking. SQLJ is more convenient, concise, and more safe than
JDBC calls. JSQL clauses are translated into equivalent JDBC API through pre-
compilation step.

o Integrating a more scalable, reliable, efficient Java VM in the Oracle engine, This

integration permits powerful implementation of stored procedures, functions, and

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

38

database triggers using Java programs. Java bytecode could be further translated to

efficient running code using Java-through-C compiler.
3.4.2 Oracle8i Advanced Queuing

Message queuing is considered as the most powerful, reliable, and scalable model
for coupling distributed, autonomous applications and multiple-vendor products in
asynchronous loosely manner. The application of one side can issue a set of messages in
persistent, transactional queues. Messaging brokers (i.e., MOM) or internal engine
mechanisms provide the gnaranteed delivery of those messages, to whom they may be of
interest, Messages are delivered and placed into another queuing system or external
listening program. The messaging communication mode! has the capability to preserve,
track, document, correlate, and inquire messages. (Oracle, 1999, b).

Oracle8/ Advanced Queuing (AQ) is designed to address messaging queuing
technology with a high degree of reliability and scalability in developing mission-critical
and message-based solutions. Oracle8/ AQ offers structured payload (or data), priorities,
ordering, window of execution, tracking, and transactional behavior for messages. Also,
Oracle AQ supports content-based publish/subscribe model to multiple recipients,
workflow communication model through schedule propagation, and asynchronous
client/server model using messaging queues as reliable communication buffers.

Messages in Oracle AQ are either structured with an object type or non-structured
(raw) in a binary data format. Queues are either persistent or non-persistent. Persistent
queues are created over relational tables in which one or more queue with the same
structure can be constructed within the same relation. Producing and consuming
messages 18 handled using engueue, and dequeune operations. The sequence of those
operations has the transactional behavior so they are visible to public after committing

the current transaction. However, using autonomous transaction model or non-persistent

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

39

queues, the effect of those operations can tmmediately take place. Also messages in a
transaction, which are created in the same queue, may be grouped and then consumed as
a unit.

Messages consist of properties and data. Correlation, priority, recipients, and
identity are the main attributes of message properties, Where, the correlation is an
optional user defined value which logically classifies messages into sub-categortes. In
contrast, structured or non-structured payload represents the message data. Recipients
can be determined on queue or message [evel. A recipients-list may be constructed for
each produced message while that message is being enqueued. On the other hand, queue
level recipients, or queue subscribers are dynamically added, removed and altered as a
default target of queued messages. A subscriber mainly is identified by a name and may
be attached with a rule. A rule is a logical expression that represents the subscriber’s
interest in messages, and takes the power of where-clause conditions of SQL statement.
Oracle rule engine matches all available rules on a given queue with the unprocessed
published messages. All candidate messages are emitted to their subscribers using one of
the following models:

» For non-persistent queues: messages content is dispatched using asynchronous
notification mechanism. A callback function which already has been registered using
OClI API (Oracle native calls) is asynchronously invoked to recetve new available
messages that match the subscription criteria.

e For persistent queues: the message properties is received using asynchronous
notification mechanism, while the message content is retrieved using explicit
dequene operation.

« Extracting messages using one of appropriate pull models. This is accomplished,

either using continuously polling model through non-blocked dequete operation. Or

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

40

using blocked dequeue or listen operation. Blocked dequene operation saves CPU
and network resource because the current process remains blocked till a new
message has become available. With the same mémner, Listen operation has designed
to listen on one or more queues in parallel, and returns the queue handle on which a
new message is being avaifable.

Database events (or triggers) represent the main significant source for publishing
information. Using Oracle AQ rule-based subscription instead of callout procedures,
enables notification to be accomplished in reliable and recoverable publish/subscribe
nodel. Note that Oracle AQ interfaces are implemented in PL/SQL (Oracle procedural

programming language), C/C++ precompiler, OCl AP, and Java language.

3.5 Summary

The Internet computing has become quietly matured for developing and deploying
full behavioral systems, transactional business solutions, and missian-critical applications.
This 1s due to bringing the best of interoperable, reliable, and scalable network
computing models to the Internet environment, such as, client/server, publish/subscribe,
and distributed object technology. Those architectures increase the chances for building
complex and effective reasoning systems over the Internet.

Currently, the research and the development of the database management systems
(as in Oracle) have been focused on the Internet computing technologies. They have to
support the best of client/server, publish/subscribe models. For interoperability, their
services’ interfaces, also, must obey one or more open standard distributed objecf

technology.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Chapter 4

Extending the MCP for the Internet

4.1 Introduction

In this chapter, we propose a model for coupling reasoning systems and databases
on the Internet based on the Monitor Coupling Paradigm (MCP). The proposed system,
that we call /IMCP (where, i denotes the Internet computing), is designed over a three-
tier network computing architecture to increase the overall scalability and efticiency.

The MCP uses rules in both database and reasoning system, and embodies a TMS
within the reasoning system framework to efficiently identify defected inferences, and
revise system beliefs accordingly. The MCP maintains data consistency and to some
extent distributes functionality in reasonable way between the loosely coupled systems..
As such the system satisfies the strong demands for nussion-critical Internet applications.
Developing and deploying of Internet applications - which are highly distributed,
autonomous and heterogeneous, require careful usage of open reliable standards to
increase their availability, scalability, portability, and interoperability.

The iMCP is characterized by using asynchronous communication model whenever
that is possible. Building asynchronous loosely integrated interfaces minimizes systems’
dependencies and maximizes parallel utilization of local and remote resources.

This chapter presents the /MCP in details and the alternative architectures that
might be considered. The chapter is organized as follows. S;ection 4.2 mentions the
limitations that fach the original MCP for the Internet environment. Section 4_‘3
describes a general view of the proposed paradigm. In section 4.4, the knowledge and

the logic of ATMS-based reasoning system are presented. Section 4.5 proposes the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

42

architecture of the middle-tier application server in handling communications and service

issues. Finally, the database notification mechanism is discussed in section 4.6.

4.2 Limitations of the original MCP for the Internet environment

The onginal MCP (Hindi, 1994) was developed to integrate an active database
system with a TMS-based reasoning system. lt was also restricted by the listen-notify
mechanism of the POSTGRES (the active DBMS for which it was developed).
Therefore, it is not entirely suitable for the Internet environment, due to the following
reasons:
1.The original MCP generates the database retrieve commands and active rules in a way

that makes the database system performs as many as possible of the select and join
operations, that would otherwiselbe performed by the reasoning system. This is
because the“ database system is more efficient in doing these operations, However, in
the Internet environment, that makes the approach losses its scalability (i.e., the ability
to efliciently manage a large number of concurrent connections). Recall that the
process of generating rules, and retrieve commands must run once and before
reasoning starts. But in many applications, new available constraint parameters are
bounded at runtime for each problem instance, e.g., student number in an electronic
registration system, and source and destination in a flight-route planning system.
These parameters (or vanables) must be recompiled in the database subnets (i.e.,
considered when the Rete is constructed) to restrict the retrieved data and the affect
of the .monitoring rules. Moreover, regenerating these rules for each user (or run)
must be followed by creating private-secondary relations that are listening only for the

relevant modifications according to their corresponding rules. Therefore, rules and

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

43

secondary relations are only being persistent, but not actually shared. Discarding those
instance parameters, and dealing with one general copy of retrieve commands will
affect the reasoning process performance due to extracting unnecessary data, Also,
for heavily concurrent connections, dealing with many rules (each connection has its
own set of rules) will degrade the database system performance.

2.In a lighly distributed, heterogeneous, and autonomous environment, it is hard to
determine the subnets that maximize the benefits of database select and join
operations.

In addition, the POSTGRES alert mechanism in the MCP, suffers from the
following drawbacks:

1. Using two secondary relations (or even one secondary relation) for each subnet in the
problem instance could be considered as a system overhead.

2. Traditional secondary relations do not directly maintain the sequence of the
modifications in the temporal order in which they occur. e.g., insert, delete, insert on a
specific record, probably, transmitted as insert, insert, delete.

3. Listen and notify commands in POSTGRES are not fully compliant to the push

technology (see section 3.2.2). The reasoning system has to periodically check for

possible notifications.

4.3 The general architecture of the IMCP

In this section, we modify the original MCP for the Internet environment in a way
that avoids the above drawbacks. We call the resulting paradigm, /MCP (Internet
Monitor Coupling Paradigm). The /MCP is distributed among three-tier network

computing architecture (see figure 4.1). The front-end tier is a Java-enabled Internet

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

44

browser used for easy development and deployment. The middle-tier agent is an
application server that is assumed to be connected 24-hour a day to the public Internet, It
also populates the TMS-based reasoning system. 1t provides open network agent
services (e.g., Java Dynamic Management Agent) and interoperable database
programming interface {e.g, Oracle / IDBC & AQ API). The back-end tier is a data
server that supports both client/server and publish/subscribe network processing models
(e.g., Oracle DBMS). The browser downloads the TMS-based reasoning system, as a
Java applet program, using the HTTP protocol. The flown reasoning system runs on the
browser’s Java VM. It requests values for a set of initial parameters, such as student
number in registration system, and then generates the required data retrieving commands.
The system sends these queries to the middle-tier, asynchronously. The middle-tier, in
turn, orders the database system to execute each query. The retrieved results are
transmitted via the middle-tier agent to the reasoning system. Later on, any modification
on the retrieved data (i.e., delete, update or insert relevant data in the database) is routed
from the data server through the middle-tier to relevant clients (reasoning systems) using

a set of active rules running over both database and middle-tier agents.

[Jata

. m! data query . Java-
\ I 21 Application [S"""""" enabled
Server /" ita ncliﬁcaliOW drowser

Figure 4-1: iMCP basic architeclure

In general, during the execution of a client retrieving command, extracting subsct
‘ of a database relation could contain repeated similar rows, since not all attributes of that
relation’s identifier may be selected. Consequently, deleting a row from the database
does not necessary mean that the selected columns of that row are also deleted. Another
copy of those non-unique selected columns may still exist in the database. To avoid

emitting non-accurate alerts {modifications), the number of identical copies (or clones) of

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

45

each selected row must be computed with the retrieved data. When a row is delete from
the database, the reasoning system decrements the number of its clones by one. The
reasoning system considers each database row with no clones as a deleted row. The
ATMS treats the deleted rows as nogood environments, and therefore, all the beliefs that

depend on their existence must be revised.
4.3.1 Production rules in the iMCP

Unlike the original MCP, in the /MCP, each active rule and retrieve command is
based on a singleton predicate. The database system 1s only used to retrieve relevant data
and alert the reasoning system for any new available modifications. For simplicity and
scalability, the system tries to identify and restrict the amount of retrieved data without
taking use of the optimized database join operation. The join is performed on the client
side on the retrieved remote data only with reasoning meta-knowledge assistance, such
as, a list of nogood environments. This is because, single-predicate selection criteria (no
join) allows us to generate static general active rules that serve all problem instances.
Consequently, this decreases systems’ dependencies and increases the database scalability
for concurrent handling of many clients’ requests. Moreover, in distributed and
autonomous database systems, complexity that may be raised in identifying subnets as in
(Hindi, 1994), can be directly resolved if each subnet just contains a single remote
predicate.

Production Rules in the iMCP are distributed among the three tiers as follows:

e In the database system, two kinds of rules are registered:
* Active — Publishing rules: are database triggers that are statically created for a
particular database relation. During database operations on that relation, these
rules are automatically.activated to publish any relevant (to any client) data

changes, as messages, using predefined transactional queues.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

46

* Subscribing rules: are dynamically assigned, by the middle-tier to automatically
consume any relevant available queued messages. These queued messages are the
relevant data changes, which were previously published due to firing Publishing
rules. Using a database rule engine, available messages in a particular transactional
queue are evaluated against the conditions of attached Subscribing rules. Matched
messages are then dispatched to their subscribers {(middle-tier agents).

e The middle-tier, in turn, maintains another type of rules, called Sefection nules,
They are used to determine where to send the retrieved data (i.e., to which
reasoning system). These rules are implicitly registered to reflect the selection
criteria for each connected client. Clients (reasoning systems) ask the middie-tier
agent to run a set of selection query commands and send back the results, The
middle-tier sends the selection query to the connected database to be evaluated
there. In addition, a copy of each selection criteria is registered in the middle-tier as
a Selection rule. Each Selection rule keeps a list of the clients that owns tha{mle.
When the data arrive from the database queue(s) to the middle-tier using
Subscribing rules, they are further dispatched to the corresponding clients using
Selection rules

¢ The last rule type that is managed by the client, are the Problem-Solving rules that
correspond to the expert system domain knowledge.

In the /MCP, for simplicity and modularity, the condition filters of Publishing and
Subscribing rules are too loose and general. When at least one Subscribing rule is
available on a relation, any modification on that relation is published as a message to the
corresponding transactional queue(s). At transaction commit point, all these queued
messages, are automatically dispatched to their subscribers or middle-tier agents.

Therefore, ,some of the arrived changes from the database possibly can be
discarded by the middle-tier agent, because they are irrelevant to the available Sefection

rules. However, this messaging traffic problem, between the database server and the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

47

middle-tier, may be substantially limited using message grouping option. The database
system at the end of each transaction groups all messages in the same queue to be
consumed as a unit with a single networked message. Moreover, in most cases, the data
transferred between the data server and the middle-tier agent usually travel a short, fixed
distance.

Another possible solution could use thclcompound content-based Subscribing
rules. 1n this case, a Swbscribing rule would not only restrict the relation type to retrieve
the queued messages, but would ensure that the values of the message attributes are of
interest to at least one client (reasoning system). In ancther words, Swbscribing rule on a
relation is a union of all clients’ Selection rules. However, this approach to be effective,
would require additional optimization step for test reduction. Moreover, deal with
attributes’ content, the system has to use the structured messages. That means, the
modification messages of a certain relation would have to be queued in a queue table,
which has the structure of the original relation. In épite of its static nature, this requires
creation of different queues and queue tables with the number of the monitored relations.
However, due to the performance issue and to save the network bandwidth, 1t is
suggested to implement the architecture of the system messaging using the previous
architecture. The transmitted message should be consumed by at least one available
subscriber, so that no messages would be discarded.

4.3.2 A three-tier/two-tier configuration approach
Based on the content-based Subscribing rules, an alternative possible approach for

the iIMCP can be constructed, which is a tree-tier/two-tier architecture as shown in 4-2.

Application
Server

Rele & ATMS

Thin IDBC
Oragle AQ

Pubbshmg
riiles

Subsc“bmg
rules

Oracle Server
< selected data : lientfserver.

------- > changed data ; pubfish/subscribe.

Browsers

Fioure 4-2: 3-lier/2-tier confienration

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

48

In this approach, transferred data need not pass through a middie-tier. Instead, it is
transferred directly from data server to the browser that runs the reasoning system. The
communication mechanism in the three-tier/two-tier configuration is described as
follows. Using the HTTP communication protocol, the reasoning system, a thin JDBC
driver, and an Oracle AQ API are downloaded to the client site from the middle-tier
where they are stored. A direct connection is established between the client and the
database server using JDBC APIs. Relevant data are retrieved through a simple
implementation of TCP/IP Oracle transport layer (i.e., SQL*Net protocol). The client
adds a Subscriber rule for each remote relation, which reflects its selection. Sefection
rules are themselves the Swbscribing rules. Any modification on the database is published
using database triggers to be dispatched directly to the connected clients when that
modification matches clients’ Subscribing rules. However, in spite of its simplicity, the
configuration suflers from the following drawbacks:

» The system deployment wastes time and network resource. Before the system run, it
has to download expert system logic and knowledge, Oracle Thin JDBC (around
150K in a compressed form), and Qracle AQ/Java API.

* The system lacks high scalability. To handle many concurrent connections, the
system has to multiplex set of clients’ connections into a single physical database
connection. Using additional services, connection multiplexing in Oracle can be
established either by using Oracle Connection Manager, or by managing pool of
connections using Oracle Multi-Threaded Server’s dispatcher (Oracle, 1997, b).

¢ As mentioned before, conteni-based subscrtbing on relation’s attributes requires a
creation of a queue and a queue table for each relation. However, this job statically

takes place, which is independent from the clients’ connections and subscribing rules.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

49

e Currently, Oracle AQ/Java API does not support the structured message queuing
(Oracle, 1999, a). Furthermore, programs to be downloaded from web servers and
run on web browsers, they have to be written in Java. Till now, Oracle AQ APIs that
support structured messaging are available only in C/C++ and PL/SQL interfaces.

Therefore, to easily develop and deploy the iMCP in a highly scalable environment,
it has to be based on three-tier network architecture. The data server publishes data
changes as non-structured messages in a set of predetermined relations. Using relation
type Publishing and Subscribing rules and message grouping optimization, the middle-
tier automatically receives relevant relations’ modifications. Received modifications are
routed to their clients using advailable Selection rules. In the client site, the ATMS
responsibility is to receive modifications and to directly revise all relevant beliefs
accordingly.

4.3.3 Main characteristics of the three-tier iMCP

The three-tier /IMCP architecture, which we adopt, provides a high scalability,
efficiency, interoperability, manageability, and flexibility. As shown in figure 4-3, the
communication of the architecture can take many variations. A single database server
may be attached to a single application server (middle-tier agent), which has the
capability to serve many connected clients. A single database server may be connected to
more than one application server to increase the systems’ scalability and efficiency. A
single application server can integrate one or more autonomous database servers using
an open standard interface (e..g., JDBC). A single thin client has the capability to easily
extra;:t the data from multiple application servers, which use the same network agent

architecture.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

50

N

| ~ K . Execution ATMS
dola Publishing
rulesfiriggers -

mulex

Seleciion T
Stbseribing | | S . .
f

Publishing
rules/triggers

. Queny 18—
Subscribing ™" . Exeoution [~y
rules . v !
R Selechion
. rules
Dala Servers . Browsers
<~ gelected data : clieni/server. Applicalion Servers

....... » changed data : publish/subscribe.

Figtre 4-3: Mulli-type communication architectures for 3-licr

Building the system using Monitor Coupling Paradigm (MCP) that is considered as
a variation of loose coupling approaches, provides powerful reasoning capabilities that
can only be limited by the language of which expert system is written. Unlike deductive
database systems, no control restrictions are defined on the reasoning process to prevent
generating unexpected massive data or performing non-polynomial computations on the
data server. For the same goal, in three-tier architecture, reasoning that are being
performed using the data and the middle servers have to be quiet limited to increase
system scalability and efficiency. In contrast, most of heavily intelligent computations
have to be processed on the client resource. Therefore, the electronic reasoning
architecture is distinguished from other electronic technologies through using thin

software deployment with fat computations.

4.4 The logic and knowledge structure of the ATMS-based ES

Hindi (1994) has mentioned two main properties for the reasoning system to be

suitable for the MCP. The system has to be able to revise its beliefs when relevant data in

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

51

the database is changed or new data is inserted. Also, the system has to use incremental
forward chaining control procedure to easily reexamine search paths of modified data
and take into consideration any available new data. Where in backward chaining
procedure, it is hard to identify or reexamine paths that are affected by modified data.
Therefore, the most candidate suitable architecture for the proposed reasoning system is
the ATMS tightly coupled Rete-based production system. In addition to the
architecture’s efficiency, the ATMS and the production system are both incremental in
nature, Moreover, the TMSs have been designed originally, to provide a capability for
the problem solver to maintain the truth of its beliefs in a changing environment.

In the iMCP, the reasoning system is defined in a structure that is based on
PROLOG-like and Morgue-like systems. The syntax is based on PROLOG, wlﬁle, the
reasoning semantic is an ATMS-based forward chaining system, similar to Morgue’s
system {(Morgue and Chehire, 1991). PROLOG's syntax can be directly and easily
understood for non-procedural problem solving.

Tlus section consists of three main subsections. Section 4.4.1 describes the internal
and external system knowledge representation. Section 4.4.2 discusses the inference
engine design that tightly couples Rete and ATMS algorithms. In 4.4.3, the mechanism

for generating the retrieve database commands i1s presented.

4.4.1 Knowledge representation

We represent the design of the system knowledge base in terms of its external and
internal representation. The external representation corresponds for the external
knowledge format that needed by the problem solver. While, the internal representation
describes the internal structure of the compiled knowledge that is constructed by the rule

interpreter.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

52

Moreover, the design of the external representation is consistent with the relational
data model. In contrast, without contrary, the internal system representation is described
using the OMT (Object Modeling Technique) as an object-oriented data modeling,

4.4.1.1 External knowledge representation design

The external knowledge representation of the system is divided into two main
sections. A definition (or header) section that lists the predicates’ struciure as a
prototype, and a knowledge (or body) section, which consists of the general knowledge
(or rules) and case specific data (or facts).

The system deals with two types of predicates: non-database (or local) predicates
and database (or remote) predicates. The database predicate (or relation) is identified by
an address of the middle server, which is responsible for retrieving the actual data from
the corresponding database, and an optional condition filter that is applied as an
additional variable selection constraint. The intersection result of that fi'ter with the
union of all rules’ conditions that belong to that predicate reflects the actual system
selection criteria on that predicate.

Moreover, the system distinguishes between two different production rule types:
ordinary and contradictory rules. Ordinary rules are the normal rules which infer (or used
to infer) new data. While, contradictory rules (or ATMS consumers), that have higher
execution precedence than the ordinary rules, generate the inconsistent (nogood)
environments in an early processing stage to save system resources. Priorities for firing
ordinary matched rules may be explicitly managed using a special priority predicate and
implicitly using the FIFO control procedure.

Using syntax diagram, a general format of the Definition section is described below:

ty of Jordan - Center of Thesis Deposit

hts Reserved - Library of Universi

All Ri

General format:

Lxample:

> definition: T predicate-name—(}
LI: proper{y-name: j

53

r

&rb :—: meta-word = value zr . —
1

definition:

student(stdNo, subjectNo, planYecar):
typec=assumption,
address="middlc_ticr_addr™,
filter= stdNo = = Student_No,
stdStatus 1= (.

sheetPlan(subjcctNo, planYcar, grpNo, crsNo, weight,
prerequisiteCrsNol ., prerequisitcCrsNo2. parallelind):
type=premisc.
address="middle_ticr_addr”,

filter=" subjectNo = = Subject_No.

planYcar == Plan_Year.

class(crsNo, classNo, dayFE, dayCat, fromHr, toHr):
type=assmption,
address="middlc_ticr_addr".

registeredCourse(stdNo, crsNo, grpNo, weight):
type=premisc,
address="nuddic_ticr_addr”,
filter= stdNo == Student_No.

classTryReg(stdNo, crsNo, grpNo. weight, classNo,

dayOfFinalExam. dayCategory, fromHour, toHour,

register Type): type=assmption.

alreadyRegistered ().

As can be noticed from the above example, the names of system predicates and

properties start with small letters. While, variables start with capital letters (e.g.,

Student_No). Values for these definition variables are passed as arguments to the system

when the reasoning process starts. Predicates with no properties correspond to

contradictory rules (e.g. alreadvRegistered). Type, address, and filter are meta-words,

which identify the properties of ordinary predicates. The fype determines the ATMS

node type of the existing or retrieved data. Prentise and assumption are the only possible

values for this keyword. Usually, premise type companions the historical and read-only

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

54

database relations, or non-database facts, while, asswmpition represents transactional and

modifiable relations. As will be illustrated later, a derived type is automatically assigned

at runtime for inferred data. The address keyword is only determined for remote
database relations and refers to the middie-tier agent name. The optional fi/fer clause
may be used for the following purposes:

o Identifying extra common constraints on the extracted data, instead of rewriting the
same condittons whenever that relation is used.

e Increasing reasoning effictency, scalability, and generality. This is due to using
unbounded variables that are substituted from the external environment without
affecting the logic of the written rules, i.e., different problem instances can be served
using the same general knowledge interface. Consequently, this gtves the opportunity
for compiling the knowledge base into a Rete network in advance for all clients,

e Providing the capability for imposing constraints (conditions) for non-selected
columns (attributes) (as in, “stdStarus != 0" in student relation), In general, middle
tier-server, may be far away from the client browser. Restricting the retrieved columns
for only the needed ones could save the network bandwidth.

The knowledge section format is described using syntax diagrams as follows:

General format: > kiowledge: Jact- patiern =W | ——p—p

| — yyle ——»

rule |'-|:' trigger-patiern —|—> - ——[: action-pattern]—+

) exp ™ rel ™ exp

il
-

1

action-pattern I—+
1 -

fact-pattern | .
I:retract(> datum-pattern)
assert (— =)

trigger-pattern

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

55

datum-pattern % predicate-name—()]
. Ll:properry-n-'a.’ue]-—'
r

Lxample: knowledge:

note : the following facts correspond to database relations
and therefore, they have to exist inside the
database not in the knowledge section.

student(960001, 306, 1992).
registeredCourse(960001. 101100, 1, 3).

sheetPlan(306, 1992, 3, 302111, 1, 302101, 0, 1).
sheetPlan(306, 1992, 4, 306432, 3, 306331, 306325, 0),

class(301101, 1, 24, 135, 8.00, 9.00).
class(301101, 2. 24, 135, $.00, 9.00),
class(302111, 1, 26, 135, 10.00, 11.00).

classTryReg(StdNo, CrsNo, GrpNo, Weight, ClassNo, DayFE,
DavCat, FromHr, ToHr, 1):-
student{StdNo, SubjcctNo. PlanYecar),
sheefPlan(SubjectNo, PlanYear, GrpNo, CrsNo, Weight, 0, 0,
ParallelInd),
class(CrsNo, ClassNo, DavFE, DayCat, FromHr, ToHr),
FromHr > 9.0,

classTryReg(StdNo, CrsNo, GrpNo. Weight, ClassNo, DayFE,
DayCat, FromHr, ToHr, 1):-
student(StdNo, SubjectNo, PlanYcar).
sheetPlan(SubjectNo, PlanYcar, GrpNo, CrsNo, Weight,
PreCrsNo, 0, Parallcilnd); PreCrsNo > 0,
regisieredCourse(StdNo, PreCrsNo, GrpNo2, Weight2),
class(CrsNo, ClassNo, DayFE, DayCat, FromHr, ToHr).

alreadyRegistered().-
classTryReg(StdNo, CrsNo, GmpNol, Weightl,
ClassNol, DayFEl, DayCatl, FromHrl, ToHrl, Typel),
Weightl > 0,
registeredCourse(StdNo, CrsNo, GrpNo2, Weight2).

The system knowledge base is composed of facts and rules. As a common
object type for both, the darum is a smallest chunk of data (or knowledge). In a datum,
the property-value list consists of constants if that datum represents a fact. While it

might contain variables (start with a capital letter), if it located as a constituent in a rule

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

56

(i.e., either in action or trigger part). Unlike PROLOG, the rule clause might be
represented in a clause form not in a horn clause form.
4.4.1.2 Internal knowledge representation design

The proposed reasoning system relies on set of basic data objects that are used to
represent both the internal knowledge structure and the system inference engine
architecture. Visually, figure 4-4 below presents a class hierarchy of the basic data types

and their relationships with each other.

| Properly ' | Predicote l—

[Token | : A Z}
14# [BetaPropeny I L [BetaPredicate |

| | r’
_q Value H I A]pha]’mpeﬂ\

|Ex])rcssi0nS_wuhol T‘—1 AlphaPredicale l

Jixpression |

P ‘<>| Condition M Check f
I I

l Function | l Puncluation |
I RelalionalOperalor I |/\n‘lhmulic0pcml{1r
[]
Variable] I Constant —]
I —
[Boolean I | Fleat
Integer |] String I

q AlphaDaiwun :

Figure 4-4: OMT diagram represents the basic data types of the rule interpreter

The rule interpreter parses the knowledge tokens into predicates, property
names, property values, and expression symbols. The Value of a property could be either
a Constant with Integer, Float, String or Boolean data type, or Variable with bounded

domain. Values, Functions, Braces, and Ar Hhmenc operators compose simple or nested

- All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

57

Lxpressions. Two LExpressions with an appropriate relational operator in the middle form
a Condition. A list of interrelated Conditions is called a Check/Test object.

In the internal knowledge design, the basic data structures are classified into
two main types: Alpha and Beta objects. An Alpha structure denotes a singleton {or
simple) object component, In contrast, a Beta structure refers to a joined (or complex)
object data type.

Following the above convention, an A/phaPredicate is a simple object type that is
characterized by a set of atomic entities called AlphaProperties, which reflect its internal
structure. As mentioned before, an instance of that predicate is called an AlphaDatum,
An AlphaDatum object is the common pattern to compose production rules (ie.,
AlphaTrigger/Action objects) and specific case data (or Afphafacts). Joining AlphaFacts
for partial results in the Rete match algorithm composes Befal‘act objects.

Alpha/Betalacts of the same predicate are located in a hash memory table called

Alpha/BetaData object.

—

L

I Datum Predicate I

{

BetaDatum

K>

AT

g +y
AlphaDatum |
i

| BetaData ‘ I [’ AlphaData |
':'{ Fact]
I 7N 1 .
I BetaFacl K>—Hq Alphalact]
I Assumptior; | I Dcriv::d I [Prl:mis; |
y [;
| Action |
“___-_—[L A 4 L l
I BetaAction IO——-—'“! AlphaAction |
E I " Trigger 1 A
Asserted I Relracted _I
N —— . .

l BetaTrigger D—Hﬂ AlphaTrigger I

Figure 4-5: Alpha/Beia objects

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

58

Figure 4-5 above, summarizes Alpha/Beta objects that can be used to construct
facts and complete production rules.

Consider, for example, rip(‘Amman’, ‘Zarka’} as an AlphaFact that
corresponds to a frip AlphaPredicate, which is located in #ip’s AlphaDeata. On the
other hand, ‘trip(“Amman’, 'Zarka’) ~ salesman{ Moh'd’, "Amman’) ' is a Betal-act
that belongs to “frip *~ salesman’ BetaPredicate, which is located in the BeraDara of that
predicate. While, trip(From, ‘Zarka’} is considered as an A{phalrigger or Alphadction
if it cc-)rresponds to a premise or an action part, respectively. In the same manner,
‘trip("from ", X) ~ salesman("Moh', X)' can be classified.

4.4.2 The inference engine

The /MCP uses a Morgue-like approach for tightly coupling a forward-chaining
Rete-based production rule system with the ATMS. The production system is considered
a problem solver that generates intelligent inferences in the form of justifications.
Justifications are passed to the ATMS labeling algorithm to maintain their truth and
dependencies. In the tight coupling approach between the two modules, the Rete
network of the production system interferes with the dependency network of the ATMS,
and ATMS nodes are part of Rete data facts. This coupling is illustrated in figure 4-6
below. Where, normal lines represent Rete links between Rete nodes, and dotted lines

correspond for links in the dependency network between ATMS nodes.

...

P-node

,,,,,,,,,,,, P IPTER T ETTE PR

Figure 4-6: hypothetical example for coupling the Rete and DN of ATMS

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

59

4.4.2.1 The ATMS design

The ATMS maintains the truth of system beliefs and keeps them up to date to
reflect current reasoning status when some assumptions are modified. Keeping ATMS
nodes and links in the dependency network consistent with a llninimum time and effort, is
the goal of the ATMS labeling algorithm.

During ATMS labeling algorithm, type of nodes (i.e., premise, assumption, derived
or assumed) might be automatically converted from one to another. However, for
efliciency and simplicity reasons, it is preferable to avoid such situation by specifying a
specific node type with each datum during datum lifetime. The system does not allow
justification for assumptions and premises. Assumed nodes are considered as a part of
derived nodes and are not recognized as a separate type. Assumed nodes in the iMCP do
not have a significant useful usage, since no join operation is performed by the database
system. The original MCP has used the assumed node to initially label the retrieved
joined tuples from the database by its constituent tuples. If any of its constituents
discovered as a nogood environment, then directly the system recognizes that joined
retrieved tuple is a nogood environment.

Preventing dynamic swapping from one type to another, and assigning a static ATMS
node type for each fact at its creation time, permits the type of an ATMS node to be
considered, as a type of the tuple (fact) that is attached to that node. This is cleared from
figure 4.5, where, Alphalact object is classified into Assumption. Premise, or Derived

object. In figure 4.7 below, the ATMS architecture of the iMCP is described.

~ " Justification Antecedent 1052 Fact |
Consequence |<> a ~l

d ATMS-Node |}

—| Labe] K>—| Environment |<>—| Assumption —|

Fieure 4-7: The ATMS desien

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

60

Justifications (or inferences) are constructed in a form of Consequence and
Antecedents facts. An ATMS node is a part of the Fact object (that is, BetaFact,
Assumption, Derived, or Premise object). Moreover, the ATMS node has a Labe/ and a
set of Justifications that support that node. A Label is a set of Lnvironments in which
the ATMS node holds. Where, an Environment is a bit-vector of consistent Assumptions.
It records all nodes in the label of which it appears and implements two main set
operation methods; wnion and swbsef test, which are the basic operations of the ATMS
labeling algorithm.
4.4.2.2 The Rete-based production system design

As discussed early in section 2.2.2, the Rete algorithm ts used to optimize the
match step of recognize-act-cycle by saving the matching results of the previous cycle to
be avatlable for the next one. Also common parts of condition elements are utilized
(shared) to reduce the number of match test operations and minimize the cost of the
labeling algorithm in Morgue-like tight coupling approaches.

The design of the Rete algorithm for the /IMCP has concentrated on increasing the

sharing benefits, especially during ATMS labeling algorithm.

‘ Rool I

1 []

| Data I Coniruyl I.—I | Predicate
2
I Rule l A
1
| T-Const | I And I—
Check

Figure 4-8. The Rele archilecture

From figure 4-8, the basic data structure of the Rete implementation is the Control
node that might be a 7-Const node (corresponds for a simple data selection} or an And

node (refers to a complex selection criteria). An And node has two input Confrof nodes.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

61

The Comirol node, in turn, consists of Data, list of Rules, set on NextAndNodes, Check,
and Predicate object. Therefore, the external structure of the Rete network consists only
of interrelated Control nodes. The Root node is implemented as a hash memory table,
which contains all system Aipha/BetaPredicates.

The Data for a 7-Const node is an AlphaData object type with an
AlphaPredicate type. On the other hand, the Dara and the Predicate of an And node are
of type Bera objects. As described, the Predicare structure also has a Dara object, which
is considered as a knowledge reference domain for any related Controf Data. In other
words, each fact in the Dafa object of any Control node must refer to an original
reference in its Predicate Daia object. Consequently, ATMS labels, which are part of
fact objects, are shared for all Control nodes that have the same Predicafte structure. The
list of these Conirel nodes is maintained in the fact’s Predicare. This list is also used in
identifying all memory nodes in which a fact is stored, instead of recording a private
subset list with each fact. That is, maintaining one main memory reference for each
Predicate in Morgue-like tight coupling approaches increases the sharing benefits for
labeling algorithm, reduces the overall system space, and improves searching algorithms
to track facts in the Rete network.

4.4.3 Generating the retrieved commands

In the /MCP, client’s browser downloads the reasoning system using HTTP
protocol from the application server (i.e., the middle-tier agent). The reasoning system
requests from the user to provide it with values for some special variables, which are
located in filter clauses of the reasoning system knowledge. The system builds the
corresponding Rete network and loads all initial local data according to its general
knowledge and without considering these filters. Therefore, it is possible to persistently

store the rules of the system as a compiled Rete network object instead of a text file in

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

62

the application server. If there is at least one remote relation, a new thread (i.e., light
process) is activated to handle network communications and remote data retrieving. The
original process starts the reasoning with available unprocessed data buffer and
collaborates with the communication thread in a consumer-producer synchronization
model. When no data is available and all remote data queries are executed, the system
can halt.

The communication thread clusters all remote relations according to their middle-
tier addresses. A connection is established between the client and each of the mentioned
address. To form a retrieve query command, the communication thread has to construct
for each remote relation the corresponding query command as a Sefection rule using the
following steps:

I-For the corresponding type-chicck node in the Rete network, disjunct (using OR) the
check condition of each of its f-const node with the others. As a simple optimization,
if an o-memory node is directly connected with that fype-chieck node, then the step
returns #ue.

2-1f a filter clause has being attached with that predicate, then conjunct (using AND)
the query expression of the previous step with the substituted filter expression.

3- Associating with each query expression, its predicate name and the selected
properties with their orders in a form of SelectionRule object (its structure is
described in the next section).

Let us consider the example listed in section 4.3.1.1, figure 4-9 shows the corresponding

Rete network.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

63

prerequisiteCrsiNol > 0
prereyuisileCrsNoZ ={)

prerequisiteCrsNol =0
| prerequisiteCrsNo2 = #
subjectMName
planYear
subjectNume /
planY ear

e

crsNo

pretequisileCrsNol—

regisiercdCourse.crsNo |

Figure 4-2. The Rete network for example in section 4.3.1.1
The systen clusters all remote predicates in one group, since they all refer to one

middle-tier agent. As described in figure 4-1, each remote predicate has the following
query filter expression.

Where, Student_No = 960001, Plan_Year = 1992, and Subject No =306

Student (stdNo = 960001 and stStatus !=0)

ShectPlan (subjectNo = 306 and planYcar = 1992) _
and { (prerequisitcCrsNol > 0 and prerequisitcCrsNo2 = (1)
or (prerequisteCrsNol = 0 and prerequisitcCrsNo2 = 0))

Class
RegisteredCourse | (stdNo = 960001)

Table 4-1: Query filter expression f{or (e example in section 4.3.1.1

It is worth mentioning that the constructed query expression must conforms the
structure of the query service of the used middle-tier agent, so that it can be easily
understood and further processed. Figure 4.10 bellow describes the structure of the
query expression of the Java Dynamic Management Agent, which we adopted in the
implementation. Two new expression types are added to support binary/unary function
expression and positional attribute (an indexed property), which are FuntionValueExp

and Positional AttributeExp respectively.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

64

{ QuervEval I
[QuenExp | | [Valuelxp |
| AndQueryExp I——I OrQuerylixp || NumericValue I——[Allributelixp]
[13etweenQueryExp {—=~{BinaryRelQueryExp| [StringValuexp |1 BoolcanValue |
| NolQuerylixp I I BinaryOplixpression

Figure 4-10. Query cxpression in Java Dynamic Management Agent

An asynchronous request to the middle-tier with the vector of constiucted queries
(i.e., SelectionRules) is issued. The communication thread registers itself as a subscriber
(or active session) for any relevant incoming data to the middle-tier agent. Using the
push model of the agent event service, the data that result from the query execution and
the relevant modifications are automatically received while the reasoning procedure is
running,

However, to save system resources and the network bandwidth, arrived data in the
middle tier is buffered. The system periodically transmits the data to their subscribers
(i.e., reasoning systems) in reliable message semantics. Each received element of the data

has the following structure (visually presented in figure 4-11):

4[DBOpemlion']'ypcl
’ 1 1 DBRelationName |

—o[DBAuribute Value|

| DBWeight l

Figure 4-11; DBTuple structurc

The data is received by the reasoning system in terms of a collection of DBYuple
objects. The DBTuple is processed by the system as an assert or a retract command. The
DBTuple object has an operation type, a relation name, ordered values, and a weight.
The operation type can be either select, insert, or delete. Where the update operation is
translated into delete followed by insert operation. The weight of DBTuple object in the
select operation corresponds to the number of duplicates of each selected tuple from the
database. On the other hand, for inéert and delete operations, the weight equals one. This

means that each selected tuple (DBTuple) from the database is mapped with its

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

635

duplicates into the corresponding Alphalact object in the Rete network. Inserting a new
clone of that tuple increment the number of cached duplicates by one. On the other hand,
when that tuple is deleted from the database, the system decrements number of
duplicates by one. Any cached fact in the Rete with no images (or clones) is treated by
the reasoning system as a nogood environment.

Relying on exactly-once message semantics, the system counts the number of
retrieved vectors with select operation to determine either to wait or to terminate the
reasoning process when no new data is available for reasoning. The wait for new data

only reasonable, if there are still queries to be evaluated.

4.5 Middle-tier processing role

In three-tier network computing architecture, the tasks of the middle-tier server includes:

. Mair;taining the application logic into a single location for an easy development and
deployment.

» Providing scalable, reliable, and interoperable open standard network services.

» Increasing applications availability and efficiency due to distributing systems’ load and
utilizing network resources.

In the iMCP, these functions of the middle-tier are utilized using both client/server
and publish/subscribe message computing models. Evaluating database queries is the
main client/server operation. On the other hand, receiving database notifications is
automatically accomplished using publish/subscribe model.

The reasoning system asynchronously requests the middle-tier agent for evaluating
a set of simple queries. The middle-tier agent responsibility is to tell the database system

to execute the transmitted queries, statement by statement. Once the results are returned,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

66

they are automatically propagated to their actual clients (i.e., reasoning systems). In

addition, each -query is considered as a Sefection rule, which subscribes for the relevant

arrived modifications to the middle-tier to immediately reiransmitted to their original
clients. Therefore, the middle-tier agent architecture should support:

e Open standard distributed object technology: to provide the mechanism for thin
clients {(i.e., browsers) to transparently communicate the middle-tier services in
client/server and publish/subscribe communication models with interoperable and
portable interfaces. The protocol used, also, must be supported by the browser as an
open, reliable, and standard protocol, e.g., Java/RMI and CORBA/IIOP.

¢ Query Service: which formulates clients queries in predefined interoperable interface.
That interface manages, analyzes, prepares, and executes database queries. Also,
through the interface a simple rule engine can be constructed to assist what Selection
rules do correspond to the current data modifications,

e Event Service: providing push-model or blocked pull-model event communication
mechanism to receive the database modifications using the middle-tier Subscribing
rules. The event service also enables the /MCP to reemit arrived modifications to their
interested clients using the cached Selection rules.

A comprehensive architecture of these requirements could be implemented using
either Java language or CORBA OMA architecture. The package of Java RMI, JDBC,
Dynamic Management Agent, and Oracle AQ/Java API together includes the required
functions. On the other hand, CORBA 1IOP and ORP, CORBA Query and Event
services, and Oracle AQ API in Java or C/C++ provide another effective alternate for
constructing an infrastructure for the middle-tier network agent. Recall that, in the /MCP
implementation, we have used the first network agent architecture (i.e., Java language}

‘because of its simplicity and flexibility.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

67

Using these cooperated services, two main components are built on the middle-tier
agent. One for repository interface, which deals with database retrieving and notification
mechanism. And the other is a rule engine manager, which receives the clients query
commands, and passes the database notifications to their interested clients. In the
following subsections, the architecture and behavioral processing of these components

are abstractly described.
4.5.1 Middle-tier agent data structure

The internal architecture of the middle-tier agent is based on a set of elementary

data structures, which are described in figure 4-12.

[Querylixn

|
Ny

[SclectionRule SelectedAttributes .
| -
{iribuleNume|
I DBRelation D { DAt b_‘

I ActiveSession I —| DRRelationName]

[_DBTuple | | [Changedatiributes)
| PRTimeSlamp I—I—d DBChange |

Figure 4-12: Middle-tier components’ data struciure

Connected clients are represented in the middle-tier as an AcriveSession object,
which has been attached with a set of SelectionRules. Each SelectionRule belongs to a
particular relation and has a query filter expression, selected attributes and conditional
attributes (i.e., non-selected attributes, which is mentioned in the query filter expression).
To validate the SelectionRule, the middle-tier caches meta-data (logical structure) for
each used relation. The database changes are managed in the middle-tier in the form of
DBChange entries. The DBChange consists of a time stamp, a tuple, and a list of
changed attributes (for update operation). Where the time stamp is a serial number that

informs the system on the temporal order of these changes. However, in Oracle DBMS,

it can be directly generated from a sequence generator object. The sequence generator,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

68

unlike tables, does not require any locking mechanism to guarantee its uniqueness and
incremental growth behavior in multi-user environment.

Relying on these elements, the middle-tier components have the following main

operations;
Rule e createSession () return Session
Engine e e

& e dropSession (in Session)
Manager

e doQueries (in Session, in Vector_of SelectionRules)
o dispatchRetrieved&ChangedData (in Session,
in Vector_of DBTuples)

Repository e executeQuery (in SQL_TEXT) return Vector_of_DBTuples
Inter face e setActive (in DBRelationName) return DBRelation

o setlnactive (in DBRelationName)

o receiveChanges (in Vector_of DBChange)

4.5.2 Middle-tier processing mechanism
The architecture of the middle-tier agent consists of two main components. A rule
engine that interacts with the client demands, and the repository interface that haLndIeS
one or more database connections, The client asks the middle-tier rule engine to create
an active session object that has the capability to asynchronously return the query
execution and the data modifications. The middle-tier agent receives the client (or
session) selection commands as a set of SefectionRules. 1t places them in a special job
queue. Each job (i.e, session SelectionRule) is executed in the following ordered steps
by a special dispatching thread:
¢ Using the middle-tier local buffers, it searches for a meta-data of the target relation,
which that SelectionRule is based on (i.e., its attributes al?d their orders). If no entries
available, the system calls the setdctive function to return the required information

and subscribe the database for any modification belongs to that target relation.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

69

Subscribing is done by adding new SwbscribingRule in the database system and
listening for incoming relevant data.

« Using the relation meta-data, the system validates the requested Selectioniule.

» The system applies a transient database shared lock on that target relation to
consistency executes the job.

» The system advances the database sequence generator, and then stamps that job (or
session SelectionRile) with the new sequence value. Later on, when a new
DBChange entry is being published by the database triggers, it would be stamped by
that value, until a new job is executed.

¢ The corresponding SQL statement is executed for that Sefectionitule, by appending a
count function as a last selected attribute to retrieve the weight of each selected tuple,

as shown in the following table.

For example: select stdMo, subjectNo, planYear, count(*) studentCounts
from Student
where (stdNo = 960001 and stStatus |=0)

group by stdNo, subjectNo. planYcar

select subjectNo, planYear, gmpNo, crsNo, weight. prercquisiteCrsNol,
prerequisitcCrsNo2, parallelind. count(*) shectPlanCounts

Jrom SheetPlan

where (subjectNo = 306 and planYcar = 1992)
and ({prercquisiteCrsNol > 0 and prerequisiteCrsNo2 = ()
or (prerequisiteCrsNol = 0 and prerequisiteCrsNo2 = 0})

group by subjcctNo, planYcar, grpNo, crsNo, weight,
prerequisiteCrsNol, prerequisiteCrsNo2, parallellnd

select crsNo, classNo, dayFE, dayCat, fromHr, toHr,
count(*) classCounts

Jrom-Class
group by ctsNo, classNo, dayFE, dayCat, fromHr, toHr

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

70

select stdNo, crsNo, grpNo, weiglt, count(*) registeredCourseCounts
from RegisteredCourse

where (stdNo = 960001)

group by stdNo, crsNo, grpNe, weight

Table 4-2; SQL statements for the example in section 4.3.1.1

e At the end, the agent unlocks the target relation and returns back the result of
execution to the actual client (reasoning system} that is transparently represented by
the job’s session object.

While one or more session is being active, the middle-tier agent automatically
receives and buffers the arrived database modification entries in a form of DBChange
objects. When the number of the buffered database changes exceeds a certain threshold
or lasted for a small time window, the dispatcher thread automatically wakes up to
transmit the changes according to their interested sessions in the following steps:

« For each buffered entry, the system assesses that entry against each available
SelectionRule on the relation of that entry. Assessment includes matching entry values
{tuple) to the rule filter expression. Also for entries with non-empty changed
attributes list (i.e., obtained from update operation), at least one of the changed
attributes must be either one of the selected or conditional SelectionRule’s attributes.
Then, each session attached to these rules is candidates if the times stamp of the
session SefectionRule is less or equal to that entry’s time stamp.

o After classifying changes (entries) to their sessions, the systems sends all tuple of
these changes by a session in a single networked message.

When a reasoning system decides to halt, it asks the middle-tier to drop its active
session object and all related entries. As a result, any cached relation become with no
Sefe-'cri(mRufes, its meta-data and SwbscribingRules are automatically purged from the

middle-tier agent through calling set/nactive function.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

71

4,6 Database notification mechanism

In the /MCP, execution of the database queries and asynchronous notification of
the data modifications are the main functionality of the DBMS. Therefore, the selected .
DBMS should has the mechanism of handling two-way communication (Hindi, 1994).
From network computing viewpoint, the database not only retrieves data in client/server
model, but also, automatically publishes data to the interested external applications in
publish/subscribe model.

As stated in this chapter, to increase flexibility and scalability of the model, the
database system has defined two types of rules in handling asynchronous notification;
Publishing rules (or triggers) and Swbscribing rules. Publishing rules task is to produce
and capture data modifications with a certain format into transactional queues for later
consuming. On the other hand, Subscribing rules responsibility is to express the interest
of external applications (i.e., middle-tier agents) on the data they which to receive from
the available queues. As a result of using publish/subscribe architecture, no direct
connection is established between Subscribing and Publishing rules. Publishing rules are
constructed in a general form without aware of how and who will consume the published
data. In opposite, data is subscribed from broker transactional queues without care on
what and who is beyond publishing those data.

In the next subsections, the mechanism of Publishing and Subscribing rules in the
iMCP is conceptually described based on Oracle8i DBMS. Note that, in our study, the
actual development of such mechanism was not implemented in Oracle interface, instead,
a simple simulated Java API was developed. The first release of Oracle8/, was launched

parallel with the working on this research.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

72

4.6.1 Publishing rules mechanism

Using on-delete?, on-insert, and on-update database active rules (or triggers), a

copy of the data being processed is published in a form of DBChange object. These
triggers are activated if at least one interested subscriber is available. The values of main

attributes of the DBChange object are summarized below in table 4-3.

Trigger | Tuple Tuple values list | Changed attributes list Time stamp

event event

[nsert Insert new tuple values | null
current valuc of

Dclete | Delete | old tuple values null the DB sequence

Insert new tuple values | ids of changed attributes | gencrator
Update

Delete | old tuple values ids of changed attributcs

Table 4-3: Values of the DBChange attributes

Published DBChange objects are buffered in a non-structured (i.e., binary data
type} queue. The non-structured qﬁeue relieves the system from creating a different table
for each different relation structure. Using Oracle Java VM, the DBChange is
transformed, before enqueued, in a binary message format using Serializable protocol.
After the middle-tier agent dequeues that message, it directly restores the original
DBChange object, Using Oracle persistent advanced queue(s), the system has the chance
for grouping, guarantee delivering, and transactional visibility of messages (see section
3.4.2).

4.6.2 Subscribing rules mechanism

The middle-tier agent dynamically subscribes for all messages related to certain

predefined relation types. Subscribing can be either done on a single queue for all

? In Oracle, we mean by the on-event trigger, either before, after, or instead of row level trigger.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

73

interested relations or on multiple queues, in which each refers to a different relation.
Where in both cases, a single queue table is needed.

In Oracle, subscribing on a single queue for all relations requires the system to
build its Subscribing rules based on message correlation property (see section 3.4.2).
Messages are published with a correlation property equals to the relation name of the
DBChange object. Only one subscribing rule could be dynamically constructed to receive
the relevant modifications.

e.g., corridin ('strudent’, ‘sheetPlan’, ‘class’, ‘registeredCourse’)

Another possible architecture, let’s the database system publishes each data
relation in a non-structured private queue. All defined queues are constructed into a
single queue table. Swbscribing rules of the middle-tier agent are no more than
subscribing for all data received on the queues, which refer to the target relations.

To receive the messages of the database modifications using Oracle DBMS, the
middle-tier agent has either to initiate a blocked dequeue (or listen) command or to use
asynchronous notification APIs. In the asynchronous notification mode, a callback
function is registered from the middle-tier into the DBMS to be automatically executed

on the middle-tier server when a new data is become visible in the requested queue(s).

4.7 Summary

In this chapter, a new class of systems integration was proposed for coupling
expert systems with databases over the Internet. The model for the coupling mechanism
is based on the MCP, called /MCP. The /MCP is asynchronous loosel.y coupling

approach, which maintains data consistency between its components.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

74

To make the /MCP suitable for the Internet environment, which is highly
distributed, autonomous, and heterogeneous, it is designed® to support open and
interoperable network computing standards. The model has to use the best of
client/server, publish/subscribe, and distributed object technology to run complex
programs (such as a reasoning system) over thin deployed requirements (e.g., browser).
The three-tier computing architecture is adopted to increase the system scalability and
efficiency.

Communication architecture for retrieving database query commands is processed
in client/server model, based on a single database relation (no join). In contrast, using
rule-based publish/subscribe model, any database modification on relevant relations is
automatically received by the middle-tier to be further routed to the actual interested
clients (reasoning systems).

The proposed model is too flexible in which many efficient architecture variations
could be implemented. A client could be connected to more than one middle-tier agent
with an open interface, and the middle-tier agent might extract the needed data from one

or more data server.

¥ fhe systein was i111ple111e1{ted using Java development kit 1.2 and Java dynamic management kit
3.0. The functionality of the Oracle8i was simulated using Java APIs.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Chapter 5
A New Compromised Improvement Approach

to ATMS Tightly Coupled Production System

5.1 Introduction

The efficiency of the reasoning system is an important issue in the MCP and /MCP,
because the longer the reasoning process takes the more likely that some data will
change and therefore, more data communication and belief revision will be needed. This
was also realized by Hindi (1994), and developed an approach to couple the Rete
network with the ATMS, that is more efficient than Morgue’s approach in terms of the
time needed to perform the match step. However, the Hindi {(1994) method requires
more memory than Morgue’s approach.

In this chapter, we present a new modified approach and we present an empirical
comparison between the three approaches: the Morgue approach, the Hind: approach,
and our new modified approach. Our comparison study shows that the time efficiency of
the new approach is close to that of the Hindi approach. On the other hand, the memory
requirement is close to that of the Morgue approach. Therefore, the new approach can
be considered as a good compromised between the two approaches, so, we will refer to
it from now on as the compromised approach.

In section 5.2, the drawbacks of the Morgue and Hindi systems are reviewed.
Section 5.3 represents the new compromised system. Section 5.4 proposes an empirical

study between the three approaches.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

76

5.2 Drawbacks of the Morgue and Hindi Systems

As discussed in section 2.6.2, the Morgue system for tight coupling ATMS with
production rule system, removes tuples with empty labels from the Rete network. This
reduces the cost of contradiction handling, label-update, and join operation. However, it
l_las been noticed (Hindi, 1994) that adding a new environment to a tuple, which
frequently happens in multiple-context problems, causes a crucial efficiency problem. In
this situation, the Rete match algorithn} not only need to perform environment union an&
subset tests, which are main operations of the ATMS label-update algorithm, but also
need to perform an expensive join operation. Consider, that the updated tuple is located
in a Rete memory node that is an input to a given and node. Then, re-generating
discarded empty tuples to re-compute their labels again requires re-joining that tuple with
all matching tuples in the other input memory node. These joined tuples may need further
mat&hing down the network. What makes this problem even worse is that a lot of the
matching operations may have been performed before (when the label of the tuple was
not empty for the first time).

Hindi (1994) noticed these implications of discarding tuples with empty labels, and
developed an approach to avoid these drawbacks of the Morgue approach. The Hindi
system divides each memory node in the Rete into two parts, one active part, called the
IN-part, and another inactive part called the OUT-part. The IN-part of a memory node is
used to store tuples with non-empty labels, while the OQUT-part is used to cache tuples
with empty labels. When the label of a tuple becomes empty, it is moved from the IN-
part to the OUT-part of the same memory node. If the label of a tuple in the OUT-part

becomes non-empty, it is moved to the IN-part and joined only with the new tuples in the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

77

other input node (those that were inserted while it was in the OUT-part). Time stamps
are used to determine these tuples.

However, due to caching all tuples with empty labels, an incremental growth of the
system space requires extra memory space. In some applications, OUT-parts might

become as a system overhead.

5.3 The new compromised approach

The new approach is a modification of the Morgue system. It aims at reducing the
need to perform join operations when the label of a tuple is updated. Recall that, the
Morgue system needs to join a tuple (in an input node of an and node) with the matching
tuple every time a new environment is added to its label. This s to ensure that any tuple
that might have been discarded from the output node (because its label Becomes empty)
will be generated. |

The new compromised approach avoids the need to perform a re-join operation,
when a new environment is added to a tuple with non-empty label. For this, some of the
tuples with empty labels are cached in the system. To avoid involving the cached empty-
tuple with any matching operation, its reference in the Rete memory node is discarded,
while its reference in the dependency network of the ATMS is remained as inactive-link.
When its label becomes non-empty, it is reactivated in the Rete memory node and
matched. The method also avoids the high memory requirements of the Hindi system,
because it does not cache all empty tuples. The new method caches (as inactive-links)
only the empty tuple in the output node, but not the tuples that are linked to it down the

network. .

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

78

However, if the addition of an environment to a tuple makes the label of that
tuple non-empty, then the new approach would need to perform a join operation as the
Morgue system. Therefore, in applications those require the formation of a huge
dependency network, it is expected that the Hindi system will be much better than the
compromised approach. Especially when the system has enough resources to efficiently
operate, and the data is frequently changed from the sources in which it locates.

Figure 5-1 illustrates an example of the new approach. X in the figure is a joined
tuple of R and S. If as aresult of some label-update operation, the label of X became
empty, then X itself will be cached but not tuple Z, which is dependent on X. This
eliminates the need to rejoin R and § when a new environment is added to the label of
any of them, since X is not solely discarded from the system. A join operation will only
be needed to join X with Y only if the label of X becomes non-empty. This join operation
will be need to regenerate Z. This is unlike the Hindi system, which would cache X and Z

and would therefore, eliminate the need for a rejoin operation,

if X becomes with empty label, then. ..

)

. active link
e qen IRCICEIVE Tinke

Figure 5-1: Ilustrate the changes in the dependency network

5.3.1 Discarding a tuple from the compromised system
The system would discard a tuple that becomes with empty label either as a result
of retracting an assumption or executing a contradictory rule. In general, to discard

empty-tuples, the comproﬁised system performs the following steps:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

79

o The references to the empty tuples in the Rete memory nodes are purged.
s The links of the empty tuples in the dependency network of the ATMS that support
other inferences are removed.
o The links from non-empty tuples that justify these empty tuples are remained as
inactive-links in the dependency network.
To illustrate the algorithm, in more details, c‘onsider the following example in
figure 5-2, Where, the normal lines represent the Rete network’s links and the dotted

lines correspond for the dependency network’s links.

Figure 5-2: Hypothetical example to illustrate the discard algorithm _
Assume that, a joined tuple 4, that exits in 3/ memory node, has become with an

empty label (for example, due to contradiction handling). The references to 4 and to any
relevant tuple with empty label, which 4 is a constituent of (such that, DJ & D2 in 52)
are removed from the Rete memory nodes. Also, all links of 4 and their conjugates in a3
that support any tuple in S2-memory node are dropped. But, all links that support 4
itself are not affected (links from B & C, which they are non-empty tuples). With the
same manner, the links of D/ & DZ' are treated. As a result, using garbage collecting, D/

& D2 are automatically purged from the system, since they do not have any reference in

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

80

the Rete memory nodes or in the dependency network. But A remains alive, since it has
inactive-links (from B & C) in the dependency network.

During adding a new environment to a label for a given tuple (e.g., B), the system
does not need to re-perform the match from scratch (re-join B with all tuples in a2) to
re-generate possible discarded tuples (e.g., A) and compute their labels again. The system
only has to follow the links in the dependency network of that tuple (e.g., 5B) to update
the status of its successors in the dependency network (4 and other tuples in 5/ where B
is a constituent, somehow, as occurred in Hindi’s approach). If that followed tuple was
with non-empty label, then the system simply updates its label. Otherwise, if tuple
becomes non-empty, the system reactivates that tuple in the corresponding output
memory node. Also in this case, the system would re-perform the matching down the
Rete to regenerate discarded tuples (e.g., D/ & D2). The Hindi system has solved this
problem by caching all tuples with empty labels (4, D/ & D2) in inactive memory parts
to reserve the match for possible reactivation.

However, we expect that the implication of the re-match propagation problem
when a tuple with empty label becomes non-empty would have a quite limit. Since,
inconsistent environments are discovered in an early stage of the reasoning process.
Therefore in most times, the join operation (in the three approaches) is performed (not
re-performed) on the relevant output memory nodes when a tuple becomes with non-
empty label. Usually, during labeling, the system discovers that a given tuple (e.g., A) has
an empty label before the match is propagated to the output memory nodes (e.g., 52).

On the other hand, retracting of an assumption due to, for example, a delete
operation in the coupled database system in the iMCP could affect the system
performance, Retracting an assumption, which can be thought of discovering a new

nogood environment that consists of the assumption itself, might cascade the discard

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

81

procedure into many consecutive Rete memory nodes. Later on, re-activating that
assumption again could require an expensive re-matching. In contrast, caching all these
inactive inferences (as in the Hindi system) would solve this problem, but with an extra

memory space allocation,
5.3.2 Asserting a tuple to the compromised system

The reasoning system performs the needed match operation to assert a tuple into
the corresponding Rete memory node. That tuple is asserted as a resuit of deriving a new
inference, or creating a new assumption.

The compromised system deals with two main cases; the tuple being asserted, as a
consequent of given justification, is new, or is already in the corresponding Rete memory
node:

» In the two cases, the system has to compute the iabel of the matched tuple. If its label
is empty or is a subset of its old label, then no new information is gained using the
current justification. However, the system has to justify that tuple by creating a new
inactive-link for possible re-activation due to adding a new environment to its
constituents.

e When the tuple does not exist in the corresponding memory node, then:

- If the current Rete node corresponds to the contradiction node (L), then the
contradiction procedure of the ATMS is called.

- Otherwise, the tuple is inserted in the corresponding memory node. I the

memory node is of type P-memory, then the system instantiates any attached

- rule. Also, for each next and node, the system joins the tuple with matched

tuples located in the other input node, and propagates the matching procedure

down the Rete.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

82

» If the label of the tuple is changed and the tuple is already in the Rete memory node,
then using linked justifications to that tuple, the system propagates the matching

down the Rete.
5.3.3 A summary of the three different approaches
The following table (5-1) highlights the differences among the three approaches:
The Morgue system, The Hindi system, and the compromised system, in terms of seven
main matching cases. Each case describes the appropriate action when the asserted tuple
(initial, inferred, or joined) has arrived through the Rete network to a corresponding

memory node in which it should be located.

Action
Case Morguc system Compromised system Hindi system
1 | * A wple docs not exist { = Do nothing. | = Justify that tuple. | = Justify that tuple
in Ihe arrived memory So, only new | » Store it in the OUT-
node. inactive-link is added | part memory location
* 1L salisfics the node’s inlo the dependency | with time stainp = (-
condition, netwerk. 1).

» It label is empty.

e ————e——————————————— |
21+ Awplcdocsnotexist | * Store it in that | = As the Morgue | * As the Morguc

. in that memory node. memory node, system. system. Where the
* IL satisfics 1he node’s | * Justify it. tuple is placed in the
condition. * Propagate through IN-part of that
» fts fabel is not cmpty. the Rete for join and memory node.
label-update.
3]+ A tuple exisisin the | * Update its label. » Updale its label. » Update its label.
IN-part memeory | * Justify it. * Justify it. = Justify il.

location (for the | + Propagale through | = Propagate through | * Propagatc through
Morgue sysiem and | the Recle for re-join | tie Rele for label-| the Relec using

the new systemt, | and label-update. update using | decpendency
memory nodes only dependency network’s links for
consist of IN-parts), network's links | label-updale.
* Iis label differs from (active & inactive
the old label, links!.
4| * A tuple existsinthe |} = Justify it * Justify it. = Justify il.
IN-part nemory
location.

» Iis label is thie same
as the old label.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

83

Action
Case Morgue system Compromised system Hindi system
5| *A tuple exislsinthe | * NA. * NA. * Update its label.
OUT-part memory * Justify it.

location. * Propagate through
* s label is not emipty. the Rele using e
dependency network

for label-updale.

* Propagatc througl
the Rete for joining
that tuple with all IN-
facts in of theother
input memory which
they liave time stamp
>= its lime stamp.

O | * A tople cxistsin the | * NA. = NA. * Justify il.
OUT-part.
* Its label is empty, B

71*A wple is L (ie. | * Consider ¢ach environment in its label as a nogood cavironment.
corresponds to the | * Remove from labels of all related tuplcs any supersel environment of the
contradiction node). nogood discovered environments.

* It label is not emptly | * Insert those tuples | * Insert those tuples = If any updated label
in a specialized | in a specialized | become empty, move
agenda, if their labels | agenda, if their labels | it with the current

become empty.

* Traverse the agenda
o delete the specified
tuples from the Rete
memory nodes and
the dependency

beconie emply.

» Traverse the agenda
to delete the specified
tuples from the Rete
memory nodes,

» Clear all links of

sysiem {ime stamp 1o
the corrcsponding
QUT-part.

» Advance tlic system
currenl lime,

network. these tuples excepl
these links, which
attached 1o non-
empty tuples.

Table 5-1: Main cases of the match algorithm in the three approaches

5.4 An empirical study of the three approaches

The following empirical study compares the three approaches under two different
situations. First, we compare the Morgue system, the Hindi system, and the
compromised system when they run as standalone program components, without any
interaction with the external environment. All the knowledge (general or instance) is
within the reasoning system shell. Second, we compare the efficiency of these systems

when each one is a part of the /MCP. The reasoning system,. in this case, takes in its

All Rights Reserved - Library of University of Jordan - Cehter of Thesis Deposit

84

considerations any relevant modification on the retrieved data, with minimum effort, the
system has to revise its beliefs and keep consistent (up-to-date) with the external
database.

We are concentrated with three issues; time, memory requirement, and the number
of required operations, The execution time and number of operations are proportional to
each other. Together, they offer a reasonable justification for any produced result. Also,
the number of conflict cycles that are required for whole reasoning process is computed
as an assistant factor to describe the system general behavior. For example, the Morgue
system requires more cycles to accomplish the whole process. That is because the
Morgue system does not go through the dependency network for label propagation.

To clarify the differences among the three systems, we consider the results of the
Morgue system as a baseline. As a case study, a Student Registration Guidance System
(SRGS} is used in formulating all the needed experiments. That application offers the
capability of building multiple-context problem that is required for ATMS-based
reasoning systems. The experiments were performed using a PC Pentium 133 processor

and a 16MB RAM, and implemented using Java 1.2 virtual machine.’

5.4.1 Student Registration Guidance System (SRGS): a case study

Many planning applications have been accurately defined and formulated in
terms of the ATMS labeling algorithm. The task of the planner is to find all possible
actions and sequences to achieve some specific goal. Electronic planing systems could

efficiently take the advantage of an integrated database by performing intelligent

processing on the retrieved shared data. For example, in flight-route planner system, the

! However, increasing system specifications directly affects the computed results, For example, using
43MB decrcase time required around the third.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

85

planner has to generate all proper routes between two different locations. Data may
include whether condition, flights, agencies and airlines information.

With the same manner, the objective of Stiudent Registration Guidance System
(SRGS) is to generate all semester schedules for a given student based on his/her record.
The system directs students to the courses and classes in which they can register, The
inpﬁt data needed includes students’ record, majors (subjects), courses, and classes basic
information.

The reasoning system performs three main steps. First, the system triesto
identify all possible classes that a student can register in, given his/her record, major plan,
and a list of all available classes. These classes are elected and stored in classTryReg
predicate. Second, the SRGS aggregates all applicable classes (i.e., the classTryReg
data} according to their courses in conrse7ryReg predicate. In other words, all classes (in
the clossTryRleg) that refer to the same course are grouped into a single tuple in the
courselryReg. Then, a set of constraints (and contradictory rules) is applied to ensure
the validity of these courses. Third, the system tries to derive the consistent sets of valid
courses to present all proper suggested schedules.

Figure 5-3 below illustrates the main reasoning steps in the SRGS.

| crs-301102, class-1 | l crs-302101, class-1 ,] ers-306101, class-1
stepl (classes) [o=301102 clase2 | | [ers-302101, class2 | | [ers302101, class3 |
step2 (courses) [e300, clas1,2 | | ore302101, class-1,23 | [ers-306100 class1 |
step3 | (crs-301102, class-1), (ers-302)01, class-3), (cr5-306101, class-1) ’
(schedules) | (¢r3-301102, class-2), (crs-302101, class-1), {crs-306101, class-1) |

Figure 5-3; Main planing steps of the SRGS

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

86

Reasoning with the classTryReg is handled in a'single-context search space. While,
most of reasoning in the courseTryReg is processed in a multiple-context search space.
Therefore, the reasoning behavior in the SRGS starts with a single-context state and
possibly ends in a multiple-context state. A complete general knowledge of the system is

listed in Appendix A.

5.4.2 Measuring the efficiency of the three systems as standalone
systems

Comparisons in this subsection highlight the differences among the three systems
during normal and complete reasoning process without any external interruptions. In this
case, the system itself is considered as a closed world. Since all the specific case data and
general knowledge are located within the expert system shell. Results in this subsection
reflect the efficiency of the inference engine during reasoning in a multiple-context
problem solving.

Experiments of this section are divided into two main groups (A & B). Group A
has 10 different experiments for a first-year student, who suggests in each experiment, a
different set of desirable courses. The goal is to generate all possible proper schedules
based on the suggested set of courses. Group B contains 10 different second-year
students. Considering their records, the system has to generate all possible schedules.
The details (i.e., the case specific data) for experiments are presented in Appendix B.

Tables below represent the resuits in terms of the three approaches.

Time /s Conflict Cycles

Experiment #of Morgue |Compromised | Hindi Morgue |Compromised | Hindi

No. Solulions Syslem Syatem Syslem Syatem System Syslem
AQ] 31| 144158 132.430(126.152 285 279 279
02 221 71.924 70,763 62,901 284 278 278
03 2| 69.300 67.658| 59.276] © 282 277 277
04 51 112,121 107,865 98.411 282 278 278
05 0 93.234 86.805] 77.622 281 277 277
06 721. 61.858 54,398| 50.793 284 283 283
07 0] 71.373 58.244| 57353 279 275 275
08 36] 47489 42,622 40,138 276 275 275
09 71 80.706 75.930| 74.898 283 280 280]

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

87

Time /s Conflict Cycles
Experiment #of Morgue |Compromised] Hindl Morgue |Compromlsed | Hindi
Nn. Salutinna System Sysiem Sysiem System Sysiem Sysiem
10 0] 189.602f 167.581] 165.328 283 279 279
Taotal 941.765 R&4.296] R12.872 2819 2781 2781
IPercentage %%-8.13| %-13.69 Ya-13.48] %a-13.458]
B-01 302] 215.560; 174.421(177.936 456 383 383
02 1077} 359.917) 324487 321432 730 082 691
03 1994] 582,948 457.067| 442.796 882 608 605
04 109] 114.575 997731 93.585 363 351 353
05 15] 101.526 77.2911 68.498 332 3lo 316
06 914] 281765 2560.909| 247.846 657 500 500
07 3] 38.365 380951 36,903 288 238 288
08 456| 253865 2497091 237.442 433 420 432
09 119] 169.354] 150.316(134.924 374 357 357
10 14] 131.069] 120543 112.952 31 309 313
Total 5003 1948.611| 1874.304 4826 4220 4238
Percentage %%-13.35 %-16.66 Ya-12.56| %-12.19

Table 5-2: Time comparison of standalone Morgue-like systems
It is obvious from table 5-2 that the Hindi system is the quickest approach to fulfill

the reasoning process. But, the new compromised systent is not much worse than the
Hindi system. While, the Morgue system is the slowest one. For long runtime processing,
the difference between the Morgue system and the others increases as the chance of
adding environments to existing tuples increases, while the difference remains nearly the

same between the other two approaches.

of Join Operations # of Evaluated Conditions # of Laheling Operations
Expesiment | Morgue | Compromised| Hindi Morgue | Compromised| Hindi Morgwe |Compromised| Hindi
No, System Syxlem System System Systemn Sysiem Sysicm System Syatem
A-01 18379 13701 13701 19291 14891 14863 1298 1295 1271
0z 15939 12203| 12203 1692) 133701 13345 1152 1146 1125
03] 16382 12770 12770 17382 13940 13911 1229 1224 1203

04y 19518 14953] 14953| 204065 16153 16103 1436 1437 1408
051 18942 14772y 14772] 19920 15956 13915 1427 1424 1397
06] 13115 12030 12005] 14213 13224 13150 1077 1076 1054
07| 14420 11062] 11062] 15411 12258 12196 1140 1138 1112
03] 11525 10468| 10448] 12605 11648 11584 962 961 938
09] 15885 14108 14085] 16895 15288) 15213 1252 1247 1221
10 22072 16383 16383] 22912 17632 17507 1653 1652 1617

Tutal ’ 166177 132450 132382] 176035 1443600 143787 12626 126100 12346
{Percentnge %-20.30 %-20.37 Ya-17.98] Ya-18.31 Ya-0.21] “a-2.22

B-01] 33939 206952 26932] 36405 284471 28328 3112 3007 3049

02| 354330 45118 45118] 55290 46829 46781 4334 4372 4352
03] 75033 47274 47209] 74584 49178 43849 6225 5924 5858
04] 29909 25479 25479] 30998 26892 26828 2156 2175 2127
05| 26033 20294) 20294] 27373 21631 21596 1901 1934 1917
06] 41913 30433 304331 42286 32062 31906 3954 3843 3828
07] 15746 13108 15108 16945 16379 16371 1261 1273] 1260
-08] 35352 31696 31693 306463 33120 33039 2923 2938 2900
0%} 38331 30017)- 30017] 39172 31465 31371 2574 2586 2533
10] 289% 24579 24579) 29981 25901 25834 2159 2185 2153

Library of University of Jordan - Center of Thesis Deposit

hts Reserved -

All Ri

88

Toial 382182 296950 296882 389497 311904 310903] 30899 30297 29977

Percenlnge %-22.30] %-22.32 %e-19.92| “6-20.18 Yo-A).99] %e-2.03

Table 5-3: Operations comparison of standalone Morgue-like systems

Table 5-3 shows statistical results for the main operations (the join, the
evaluated conditions during rules’ matching, and the label-update) needed during the
match process for the three systems. The table supports the results presented in table 5-
2. and shows the seriousness of the drawbacks of the Morgue system. The Morgue
system performs an expensive join operation whenever a new environment is added to
the label for an existing tuple. The Hindi system does not perform re-rtl1atch operation
during labeling propagation. While, the compromised approach may perform rematch
operation only if an empty label become non-empty.

Also there is a large gap between the Morgue system and the other two systems
with respect to the number to the evaluated conditions. This is because the Hindi system
and compromised system avoid re-matching when that is possible. In addition, the Hindi
system saves all empty tuples in the OUT memory parts. Moving them from OUT-part to
IN-part locations does not need to re-evaluate the test conditions again.

However, the difference in operations between the Hindi system and the
compromised system is relatively small. This supports our claim that discarding tuples
with empty labels from the systems is not propagated to too many nodes down the Rete,
because most of tuples with empty labels are discovered in the early stage of the
reasoning process during contradiction handling procedure.

Thus, the previous behavior also justifies, why the difference in time between the
Hindi system and the compromised system is greater in somehow than the'difference in
number of operations. This is because the discovéring of the nogood environments has
the highest priority than any other operation. Therefore, the reasoning requires many

calls to the contradiction handling procedure. The contradiction handling procedure in

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

39

the Hindi system is quicker than the others. Since, discarding empty tuples are simply

moving them to the OUT-part memory nodes without using an extra special agenda (as

happen in the Morgue system and the compromised system).

As a general behavior for the three systems, the label computation process must be

calculated for each matched tuple. Therefore, no significant differences among the three

systems can be noticed.

of Tuples in the Rete # of Links in the
Network Dependency Network
Experiment | Morgue | Compromited! Hindi Mourgue | Compromised [Hindi
[Nos. System System Systeni System System System

A-01 936 936 1325 1ol 1571 1680

02 871 871 1229 1039(- 1379 1497

03 899 R99 1316 1096 1554 1672

04 1002 1002 1480 1296 1882 1997

05 980 480 1497 1253 1917 2032

06 869 869 1228 1035 1347 1486

07 809 809 1211 929 1329 1462

08 790 790 1110 886 1126 1260

09 949 949 1335 1178 1582 1707

10 1046 1046 1573 1369 2061 2182

Totnl 9151 9151 13304 11242 15748 16981
Percentape Valh Y %o+45.38 _. %atd().08| Yot51.05
B-01 1985 1985 2538 3069 3639 3791

02 3658 3658 4382 6136 6900 7170

03 3295 3295 4168 5436 6580 6756

04 1707 1707) 2298 2549 3153 3308

05 1520 1520 2002 2252 2616 2794

06 2483 2483 314 3968 4662 4891

07 1159 1159 1546 1553 1783 1933

08 2241 224] 3012 3528 4550 4722

09 1941 1941 2568 3022 3670 3843

10 1662 1662 2300 2511 3231 3385

Total 21651 214651 27955 34024 411824 42553
|Percentnge Yal).0] “a+29.12 %et19.99) %a+25.19

Table 5-4: Space comparison of standalone Morgue-like systems

From table 5-4, the allocated space for the Rete memory nodes in the Morgue

system and the compromised system is identical. In contrast, the Hindi system uses

additional special QOUT memory parts to cache all empty tuples. On the other hand, the

dependency network for the new approach keeps more entities (as inactive-links) than

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

the original Morgue approach. Where, the Hindi system reserves all links for labeling -~~~ -

without any reduction.

90

5.4.3 The efficiency of the three systems as a part of the iMCP

We discuss in this subsection, how the three systems can be integrated efficiently in
a dynamic data environment using the /MCP. The approaches can take in their
considerations any alerted data from the databases. The ATMS responsibility is to revise
just all affected beliefs. The efficiency of the ATMS-based reasoning system is an
important issue. The longer the reasoning system takes to run, the greater is the chance
that it will conflict with a changing of retrieved data (Hindi, 1994).

Our objective is to study the efficiency of the reasoning system interface of the
three systems with the coupled database, based on basic data manipulation operations;
delete, update, and insert. The experiments, for this category, were performed on two
students (C & D). The goal is to generate all possible schedules based on their records.
Each student has (9) different experiments that are characterized as follows: -

Experiment A standalone reasoning (1.e., equivalent o the previous subsection).
(1)
Experiment Experiment (1) has being alerted for retracting an assumption (for example,
(2)&(3)

when a tuple is deleted from the coupled DBS), which serves in a single and

multiple- context search space, respectively.

Experiment Experiment (1) has being alerted for asserting a new assumption (for
(&) example, due to new relevant tuple has been inserted into the integrated
DBS), which creates a new single and multiple-context space search,

respectively.
Experiment Experiment (1) has being alerted for retracting followed by re-asserting the
(6)&(7)

same assumption (for example, due to transient changing on a given retrieved

tuble) that supports a single and multiple-context search space, respectively.

Experiment Experiment (1) has being alerted for retracting an assumption followed by

(8)&(9)

asserting a new one (for example, due to updating selected attributes for a

retrieved tuple, that causes removing the old status and inserting the new

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

91

one) for a single and multiplé-context search space, respectively.
From experiment (2) to (9), we discuss only the efficiency of handling the alerted
operation. Where, a full description of each experiment is listed in Appendix B.
Table 5-5, 5-6, and 5-7 below describe the time, the number of operations, and
space required for experiment (1). The results' behavior is the same as the previous

subsection, so no further explanation is needed for this case.

Time (8) Conflict Cycles
|ixperinent #ol Morgue |Compromised | Hindi Morgue |Compromised | Hindi
Na, Solutions systetn 5VSicm System Lysiem SYStem FVEiCm
C-01 12| 141.754] 112,902 112.652 338 336 348
D-01 9 87.336 78,2431 77.094 343 341 343
Total 229.290 191.145] 189.744 681 617 691
Percentage %a-16,64] %b-17.25 Yard),59| ot+]1.d47

Table 5-5: Time comparison of normal reasoning for Morgue-like systems

of Join Operations # of Evaluated Conditions | # of Labeling Operations
Experiment | Meargue |Compramised Hindi Morgue | Compromised Hindi Murgue [Compromined Hindi
No. Sysiem System Svxter System System Syatem Sysiem System Svstem

C-01f 47179 38041 380231 47998 39520 39459 3208 3230 3193
D-01] 41471 38862(38862| 42802 40379 40336] 2976 2995 2955
Total 88650 76903 76885] 90300 79899 79795 6184 6225 6148
|rercentage %0~13.26] %-13.27 Yo-1201| %-12.12 %ot0.66 _%e-00.58]

Table 5-6: Operations comparison of normal reasoning for Morgue-like systems

of Tuples in the Rete # of Links in the
Network Dependency Network

Experiment | Morgue |Compromised] Hindi Morgue |Compromised | Hindl

N System System System System System System
C-01 2557 2557 3206 4211 4759 4966
D-01 2745 2745 3319 4565 4921 3136
Total 532 5302 6525 8776 96806 101402
{Percentage Yall,Of *+23.07 Ye+10.30] Vot+15.11

Table 5-7. Space comparison of normal rcasoning for Morgue-like systems

5.4.3.1 Retract an assumption due to deleting the corresponding tuple from
the coupled database system

Experiment (2): for a single-context search space.
e.g. from SRGS: drop a singleclass course from the list of open classes.

It is obvious from tables 5-8, and 5-9 below that the Hindi system is the best in

terms of the time required to perform the retract operation. It just moves all empty tuples -

to the corresponding QUT-part memory locations. While, the other systems need a

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

92

special agenda to record all discarded tuples and traverse that agenda again to remove
them from the system. In contrast, in the Hindi system, no actual space releasing is
happened, because all space still in-use for QUT-part memory locations.

Experiment (3): for a multiple-context search space.

e.g. from SRGS: close a class from multiple-class cowrse.

This situation has the same behavior of experiment (2).
Note that, no join operation, condition evaluation, and labeling computation is required
in retracting assumptions (so, we omit operations comparison table). Retracting an
assumption is equivalent to discovering a new nogood environment. Thus, only
contradiction handling operation is needed, which is not presented in our study, since the
three coupling approaches execute contradictory rules as soon as they have been

instantiated.

Time (8) Conflict Cycles
{Experiment #of Morgue |Coempromised |” Hindi Morgee |Compromised | ind(
No, Snlutions System Syslem Sysiem System System System
C-02 6| 149,846 118.491| 114.635 339 337 349
D-02 3] 87.542, 78.974| 77.752 344 342 344
Total 237.388 197.465| 192.387 683 679 693
Dilference 8.098 6.320) 2.401 2 2 2
Percentage %-21.96| ¥a-69.91 Solhd) Yelh.0]

C-03 8] 146.841| 117.469| 114875 339 337 349

D-03 6] 87831 78.832] 77.963 344 342 344
Total 234.672 196.301| 192.838 683 678 693
Difference 5.382 5.156 3.092 2 2 2
Percentage Yo-4.20| Ve-42.55 %olh.0 “olk0]

Table 5-8: Time comparison for retract operation in Morgue-like systems

of Tuples in the Rete # of Links in the
Network Dependency Network

Experiment | Morgue |Compromised| Hindi Morpue {Compromised | Hindi

No. System System System System System System
C-02 2252 2252 32006 3617 3937 4960
D-02 2597 2597 3319 4285 4559 5136
Total 4849 4849 6525 -0 8496 10142
Difference -433 453 .) -874 -1184 [ll
Percentage IR ol 0] "/o+10(l.ill Yo=35.47| Yot 11K
C-03 2540 2540 3206 4183 4727 49606
D-03 2728 2728 3319 4537 4889 5136
Totul 5268 5268 6525 8720| 9616 10142
Difference -34 -34 0 -56 -4 0
Percentage Yoll.(}| Yot+10{.0 Yo-32.14| %t1(,0

Table 5-9: Space comparison for retract operation in Morgue-like systems

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

93

5.4.3.2 Assert an assumption when a new relevant tuple is inserted into the
coupled database system

Experiment (4): for a single-context search space.
e.g. from SRGS: submif a new class for non-existing course.

Tables 5-10 and 5-11 show that the time and operations required for the new
system and the Hindi system are close to each other. Also, the Morgue system is not
faraway from them. That is cleared since, creating a new single-context search space has
a small chance for adding an environment to an existing tuple. In this case, the match
procedure for the three approaches requires in most times join (not re-join} operation.

Table 5-12 shows that the alloéated space for the assert statement is relatively
large, since most of search space had created in this context is new. Also we can notice
that around half of entries, in the Hindi system and the compromised system, for that
operation belong to the discarded tuples. This is because we assert the new tuple at the
end of the reasoning process. Where, the list of the nogood environments is mostly
discovered. So in this case, any asserted tuple, in the Rete network, has a high
probability to be a new and with empty label. Where, a new tuple with empty label is
neglected in the Morgue system, cached in an QUT-part memory location in the Hindi
system, and maintained as inactive-link in the compromised system.

Experiment (5): for a multiple-context search space.
e.g. from SRGS: open a new class for an existing course.

In this case, the chance of adding an environment to already exist tuple is
increased. That is the main bottleneck of the Morgue system. It would require expensive
join operation during the label-update propagation. While the space required for the

three systems during executing the assert statement is quite” limited, since the match

operation has been performed on already existed search space.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

94

Time (5) Conflict Cycles

Kxperiment #ol Morgue |Compramised | Hindl Morgue |Compromised | Hindi
No. Salutions System System System System Syatem System |
C-04 18] 182.483] 150.597| 146.381 345 343 367
D-04 15| 101.896 90.570 90.801 350 348 356
Tutal 284.379 241.167) 237.182 695 691 723
Difference 55.089 500221 47436 14 14 k¥
Percentage Ye-9.20] Va-13.89 *allO] Vot+128.6
D-05 I8} 182,783 138.409] 137.137 345 343 351
D-05 15} 98.902 82.338{ 82.909 350 345 346
(Lertul 2B1.685 220,747 2200040 695 G688 697
Difference 52,395 29.602(30.300 14 11 6
Percentage Yo-d3. 50 %o-42.17 %a-21.43| %-57.14

Table 5-10: Time comparison for the assert operation in Morgue-like syslems

of Join Operations

of Evaluated Conditions

of Labcling Operations

Experiment | Morgue |Campromized| Hindi Morgue | Campromised Hindi Morgue | Compromiged| Hindi

No. Syxtem Systvn System Sysiem System System System System System
C-04| 33179 43747 43729F 53994 45232 43180 3750 3782 3751
D-(4] 44112 4395 41395} 435451 42920 42880 3274 3293 3253
Tatal 47291 B5142| B5124] 99445 88152 88060 7024 7075 7004
Difference 8641 8239 823y 8645 8253 SZGSI 844 850 856
Percentage . Vo465 Ve-d.65 Yo-4.53] Yo-ddd) Yat], l9| at1.90
C-05] 52724 38709 38a699] 53256 40316 40148 3627 3651 3613
D-058 43885 39385 39387] 45092 40957 40874 3t65) . 3183 3142
Toful 96609 THIY4 78086 98348 B1273 51022 6792 6834 6755
Difference 7959 19 1201 7548 1374 1227 o8 609 67
'ercentage Ya-845.03] %-84.91 Yn-81.80] %-83.74 %o H)L16] %-.16

Table 5-11: Operations comparison for the assert operation in Morgue-

like systems

of Tuples in the Rete

of Links in the

'I‘crmnlage

Yall.1)| Yo+18.42

Netwark Dependency Network
fxperiment | Morgee |Compromised| Eindi Morgue |[Compromised | Hindi
Mo System Syniem System System Sysem System
C-04 2862 2862 3761 4805 5823 6042
D-04 2893 2893 31624 4845 5497 5718
Total 5755 5755 7385 2650 11320 11764
Difference 453 453 860 874 1640 1658[
T'ercentage Yolh{) °/o+39.35| ____"/n+87.64 *o+89.)
C-0s5 2579 2579 3233 4247 4805 5012
D-05 2761 2761 3337 4589 4949 5164
Tatal 5340 5340 6570 8836 9754 10176
Dilference s 38 45

*o+23.33| %+23.33

GIII T4 ¢L]

Table 5-12: Space comparison for the assert operation in Morgue-like sysiems

5.4.3.3 Retract followed by reassert an assumption when a tuple is discarded

Experiment (6): for a single-context search space.

and then revived during a transient database update operation

e.g. from SRGS: close and immediately re-open a single-class course.

In this case, the Hindi system is much better than the compromised and the

Morgue systems. This situation would require expensive re-match propagating down the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

95

Rete. All retracted tuples in the Hindi system have been cached in the OUT-part memory
locations. So re-activating them requires only moving them to the IN-part memory
locations with label-update propagation. But in the other two systems, the re-match is a
must to regenerate the discarded tuples.
Experiment (7): for a multiple-context search space.
e.g. from SRGS: close and immediately re-open a class from multiple-class course.

This case reduces the size of the re-match propagation problem that raised in the
previous experiment, since ATMS problem solving mostly applied on multiple-context
reasoning. Retracting a context does not mean discarding all of its inferences. Many
inferences might also be supported by other valid contexts. Later on, re-activating the
discarded context requires mainly labeling (not re-join) propagation. However, the

Morgue system does not recognize the difference between this case and the previous

one, It has to re-perform the match again. The results in table 5-14 illustrate that

behavior,

Note that, no new space is allocated for this operation.

Time (8) Conflict Cycles

JExpeviment #al Meorgue |[Campromised| Hindi Morgwe |Compromised| Hindi

No, Salutians System System System System System System
C-06 12] 173,129 144 .428{ 127.243 346 344 350
D-06 9 96.81% 87.486] 81.837 351 349 345
Tutsl 269.948 231.914] 209.08 697 093 695
Difference 46.658 40.769 19.334 16 14 4
Eﬂﬂ'ﬂ'lgf Yo HL2H %-52.45 Yelb)| Yo-0.75
C-07 12| 206.237| 131.970{ 127.023 353 342 350
D-07 9] 107.044 83.1701 80.610 356 347 345
Tutsl 313.281 215.140 207.63Y 709 689 695
Difference 83.991 23.995] 17.893 28 12 4
Percentage %-71.43| %-78.70} %-57.14] %-85.71

Table 5-13: Time comparison for he retract-reasseri operation in Morgue-like systems

of Join Operations # of Evaluated Conditions | # of Labeling Qperations
Experiment | Morgue |Compromised| Hindi Mergue. | Compromised] Hindi Motrgue | Compromised] Hindi
Na. System System System System System System System System Svsatem

C-06F 32570 43159 38209| 53385 44644f 39659 3625 3657 3612

D-06] 43825 41117 38973] --45164)- - - 426421 40459 3163 31821 -3141)--

Totl 96395 84276 77182 98349 87286{ 80118 6788 6839 6753
Differente 7745 7373 297 7148 7387 323 604 614 605

|Percentage Yo-4.80| “o-94.17 %o-d.67| %e-95.83]| Yot1.66] Yatd.17

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

96

C-07] 00317 386906 38040' 60378 40291 39302 3812 3738 3699
D-07] 46396 39490] 38882] 47451 41079 40382 3249 3223 3178
Total 106713 78186) 706922} 107829 81370 79884 7061 G961) 6877
Difference 18063 1283 37 17029 1471 89 877 736 724
Percentage Va-92.90] %4-99.80 %a-90.36| %a-99.48 Yo-16.08] V=-16.48

Table 5-14: Operations comparison for the retract-reassert aperation in Morgue-like sysicms

5.4.3.4 Retract a tuple and assert another one due to a database update
operation

Experiment (8): for a single-context search space.

e.g. from SRGS: update the lecture time of a single-class course.

From time and operations viewpoint, the systems’ behavior for this case is similar

to that in experiment (6). The Morgue system and the compromised system discard all

tuples with empty labels due to the retract operation, and assert new entries from scratch

for the asserted one. In the Hindi system, the retracted data are cached in OUT-part

memory locations. During asserting the new tuple, the system has a great chance to re-

use the common tuples again, For example, the inferences of the courseTryReg (not the

classTrylReg) predicate could be reused, since they are common for the old and the new

reasoning states.

Experiment (9): for a multiple-context search space.

e.g. from SRGS: update the final-date of a class from muliiple-class course.

Table 5-15 and 5-16 show that the compromised system is as efficient as the Hindi

system, while the Morgue system is faraway (similar to the experiment 7).

Time (s) Conflict Cycles

{Expertment R ol Morgue |Compromised | Hindi Morpue |Compromised | Hindi

No, Solutiona Syatem System System System System System
C-08 12| 175.202(144.188] 127.603 346 344 352
D-08 9] 94.095 88.037] R2.098 351 349 347
Total 269.297 232225 209.701 697 693 699
Difference 40.007 41.080(19.955 16 16 8
[Percentage %+2.68) %-50.13 %oll.0f %a-50.0]
C-09 12 181,290 126.642(122.837 352 342 354
D-09 9 95787 81.657| 83.370} 355 347 349
Tota 277.077 208.333 206.2007 707 689 T'IJJr
(ifTerence 47.787 17.194] 16.461 26 12 12
Perceniage %o-64.02} %-65.55 %-53.85(°4-53.85

Table 5-15: Time comparison for the update operation in Morgue-like systems

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

97

of Join OQperations # of Evaluated Conditions | # of Labcling Operations
Experiment | Morgue {Compromised| Hindi Morgue |Compromised | Hindi Mergue {Compromised | Hindi
No. Syxtem System Syxtem Syxtem System Syxtem Syrtem Syrtem Syklvm

C-08] 352570 43159 38825 53385 44644 40275 3625 3657 3012
D-08] 43854 41132 39471] 45192 42656] 40958 3164 3183 3142

Total Y6424 84291 782946 98577 87300 81233 6789 6840 6754
Difference T4 7388 1411 77 7401 1438 65 G615 6406
Percentage %o-4.97| %-81.85 Vo-4.83] Ye-81.51 %+1.65] Vat+. 17

C-09] 54203 38696 38061 54643 40242 40118 3526 3504 3465
D-09] 44359 39438 39438] 45553 41000 40933 3127 3122 3080

Total 98562 78134 78099 1MHY4 81242 81051 6653 6626 6545
DifTerence 9912 1231 1214 9394 1343 1256 469 401 ay?
Percentage “a-R7.58] %-87.75 %o-85.71| %-80.63} %o-14.50] Yo-15.35

Table 5-16: Qpcralions comparison for the updatc operation in Morgue-like systcims

of Tuples in the Rete # of Links in the
Network Dependency Network

Experiment | Morgwe | Compromised | Hindi Morgue |Compromised | Hindi

N, System System System Syxlem Sysiem System
C-08 2557 2557 3232 4211 4759 5014
D-08 2746 2746 3337 4567 4923 3164
Tintal 5303 5303 6569 8778 9682 10174
DifTerence 1 1 44 2 2 72
Percentage Yl 0] Vot+d4I00 %ol). 0] Yot+3504.
C-09 2555 2555 3226 4205 4757 3000
D-09 2743 2743 3338 4559 4919 5168
Titat 5298 5298 6564 8764 2676 1G:168)
Difference -4 -4 39 -12 -4 1]
Percentage all. O] SH+107S. Yoi6.66] Va6

Table 5-17; Space comparison for the update operation in Morgue-like systems

5.5 Summary

We propose a new compromised approach for the original Morgue system
(Morgue and Chehire, 1991) that can compete the Hindi system (1994) efficiency in
many cases. The system is motivated by the observation that the Hindi system requires an
extra space allocation, which during long runtime reasoning could be considered as a
system overhead. However, in those applications require the formation 'of a huge
dependency network (and operate with enough space), it is expécted that the Hindi
system will be much better than the compromised approach, because it caches all

retracted tuples.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

98

The approach is based on solving expensive re-join operation due to adding a new
environment to a label of an existing tuple. This it done without caching the discarded
tuples in the Rete memory nodes (as in the Hindi system), and by maintaining some of
them (as inactive-links) in the dependency network of the ATMS.

The new approach neglects the re-match propagation problem due to re-activating
discarded tuples again. Since, discovering nogood environments has the highest
reasoning priority. Then, the tuples with empty labels might be explored before the join
operation is propagated down the Rete.

The presented experiments emphasize our improvement’s bases. The efficiency
of the Hindi system and the compromised system are close to each other. While, the
amount of the space allocated for our approach is close to the Morgue system. On the
other hand, the comparison results for the system when 1t 1s embedded in the iIMCP
record tne same percentage of improvement among the other systems, except for
reasoning in a single-context search space. The system efficiency might be decreased to
be close to the Morgue system, because the system has to re-perform the match down

the Rete when a tuple become non-empty.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

e

Chapter 6

Conclusion and Future Work

In the previous two chapters, we extend the MCP for coupling expert systems with
database systems over the Internet, and present anew compromised tightly coupling
mechanism between the ATMS labeling algorithm and the Rete network. In this chapter

we present our conclusion and suggested future work,

6.1 Conclusion

e Electronic reasontng systems {or e-reasoning systems) are a new class of electronic
mission-critical systems that have the capability to enhance and support other
coupled networked services. For example, a user of a critical e-commerce system
will be more safe and confident when he/she’is instructed by a consdltant e-
reasoning system. This reliable reasoning system provides additional support for
his/her decisions.

e Using three-tier network computing architecture empowers the constructed
paradigm with the scalability, availability, efficiency, interoperability, and
manageability, Also the three-tier architecture is the most natural network structure
to loosely couple the three different agents (the database system, the service-driven
network agent, and the reasoning system). Moreover, the three-tier electronic
reasoning architecture is characterized of using thin client (e.g., browser) with fat
computations,

OElectroniq reasoning systems could be efficiently proposed in terms of the MCP

(Hindi, 1994), to take use of its advantages. The MCP maintains the data

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

100

consistency of the integrated systems in asynchronous loosely coupled manner.
Furthermore, it tries to distribute the processing across the network resources in a
best possible utilization.
» The implementing of /MCP, which corresponds to the extended MCP for the
Internet, has combined the best of the network computing models to efficiently
function. The database query commands are executed in a client/server model. The
data modifications are notified through a publish/subscribe model. Although,
communications are transparently established between different tiers using an open
standard distributed object technology.
e Adopting an open standard distributed object technology {e.g., CORBA, D/COM,
DCE, and Java) increases the system interoperability, portability, and reliability.
Consequently, different architectures could be directly constructed within the
paradigm framework. A single or multiple databases {even from different data
models or vendors) could be directly coupled. A single or multiple application
servers (middle-tier agent) for the same database system may be needed. A single
or multiple connections for a client could be constructed for retrieving data of
remote predicates from different locations.
» Processing data from the database based on a single relation, and reliable queuing
messaging system, increases the paradigm scalability, generality, and simplicity.
» The system efficiency could be achieved by reducing the interaction between the
coupled systems. Therefore the approach addressed the following points:

= The interchanged data between the three tiers might be restricted using

additional dynamic filters in the system knowledge domain.
* Each of the middle-tier agent and the reasoning system should consume

only the data in which it interests.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

101

* Using reliable delivery, the transferred group of data has to be emitted as
a single networked message.

* Asynchronous communication model must be established whenever
possible,

e In the iMCP, the ATMS tightly coupled with the Rete network is one good
candidate structure for building the reasoning syster'.n architecture. Incremental
nature of that architecture provides the capability of the system to consider new
available data. Consequently, the system can asynchronously work without any
information about the database speed in executing or partitioning queries, and
receiving data notifications. Second, the system has capability to revise its beliefs
according to the arrived data to keep the reasoning up to date with the integrated
database system.

e Qur proposed compromised system in coupling the Rete network with the ATMS
labeling algorithm could increase the overall /MCP efficiency. In many
applications, the formulated reasoning system has reserved the running space and
time.

¢In a single-context search space reasoning, the Hindi system could be much better
than the compromised system. While, in a multiple-context reasoning, the

efficiency of the compromised system is close to the Hindi system.

6.2 Future Work

e Hindi (1994) had introduced the MCP with monotonic and non-monotonic

reasoning capabilities. However, for simplicity, the “MCP can only perform

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

102

monotonic reasoning. Providing the :MCP with non-monotonic reasoning
capabilities remains an issue for future work.

¢ Unlike Hindi {1994), in the /MCP, join operation is only performed on the client
site. This is due to increasing the system scalability and simplicity. Moreover, in
autonomous, heterogeneous, and distributed databases, it is hard to tdentify
database subnets in the Rete network that each corresponds for a single logical
database system. However, if the system only deals with one logical database, or
the system can resolve ambiguity in determining the maximum database subnet,
which belong to a single database system, then, it is possible to utilize the database
join operation, In this case, we suggest executing database queries based on
database joined subnets, while for scalability reasons, data notifications have to be
still based on a singleton relation. This requires building of a SQL statement (which
may contain join operation) that differs from the active Se/ection rule. On the other
hand, the constructed paradigm must never permit dealing with non-unique data.
The couni-column strategy cannot resolve the redundancy in the joined selected
retrieved data.

o The middle-tier agent’s (or application server) main task is to handle the
communications services between the database and the reasoning system in a
scalable, reliable form. We suggest constructing a global shared inference engine
that has the capability to reason the common inferences that is similar to the
blackboard architecture for problem solving. The specific instance rules would be
processed in the client’s site, while the general common rules would be
manipulated by the global inference engine. Cooperation must take place to solve
the clients’ demands on data. However, the design objective of the blackboard

architectire is to solve a single problem over parallel machine architecture, In

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

103

contrast, the objective of the global inference engine is to solve different problem
instances that share some of the general rules.

¢ In general, the efficiency of the distributed systems can be simply measured in
terms of the amount of interaction between its distributed components. For the
Internet applications this is even made more crucial because saving network
bandwidth is the key requirement of & success of any electronic critical system.
Therefore, we suggest that we have to build a general open interface for the
reasoning systems (ec.g., for ATMS coupled Rete network) similar to the ODBC
and JDBC for the databases. The Java language has to adopt such interface with an
implementation within its specification. This does not only reduce the amount of
the logic (i.e., the appler) and the knowledge of the reasoning system to be

downloaded, but also increases the application interoperability and portability.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

104

References

Brodie, M. 1988. Future intelligent information systems: Al and database
technologies working together. In Reading in AI and databases. Morgan Kaufmann

Publisher.

Ceri, S. and P. Fraternali. 1997, Designing Database Applications with Objects and
Rules. The IDEA Methodology. First edition. Addison-Wesely.

Davis, R., B. Buchanan, and E. Shartiliffe. 1977. Production Rules as a
Representation for a Knowledge-Based Consultation Program. Artificial

Intelligence, 8(1): 15-45.
de Kleer, J. 1986. An Assumption-based TMS. Artificial Intelligence, 28: 127-162.

de Kleer, J. 1986. Problem Solving with the ATMS. Artificial Intelligence, 28: 197-
224,

Dresslar, Q. 1990. Problem Solving with the NM-ATMS. In Proceedings of
European Conference on (ECAI) : 253-358,

Fernandes, A., N. Paton, M. Williams, and A. Bowles. 1992. Approchés 10
Deductive Object-Oriented Databases. Information and Software Technology,

34(12): 787-803,

Forgy, C. 1982. 4 Fast Algorithm For the Many pattern/many Object Pattern
Maich Problem. Artificial Intelligence, 19:17-37.

Golshani, F. 1984, Specification and Design of Expert Database Systems. In Expert
Darabase Systems, Proceeding From the First-Imternational Workshop. _369—381-.

Gwertzman, J. and M. Seltzer. 1996, World-Wide Web Cache Consistency. On

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

105

http://www.eess.harvard.edu/vino/web/usenix, html,

Hindi, K. 1994. Integration Truth Maintenance System with Active Database
Systems for Next Generation Cooperative Systems. Ph.D. Thesis, Department of

Computer Science, University of Exter, UK.

Hindi, K. and B. Lings. 1994. Using Truth Maintenance Sysiems To Solve The
Data Consistency Problem. In Proceeding of the second International Conference

on Cooperative Information Systems: CoolS-94, University of Toronto Press,
Canada.

Johnston, R., V. Wolfe, M. Steele. 1996. Real-time CORBA, Distributed Object
Technology. On http://www.omg.org/docs/orbos/97-02-22 txt.

Mahmoud, K. 1997. 4 Study of Efficiency of TMS-based Production Rule Systems.

Master Thesis, University of Jordan, Jordan.

‘Morgue, G. and T. Chehire. 1991. Efficiency of Production Systems when coupled
with an assumption based Truth Maintenance System. In Proceedings of Ninth

National Conference on Artificial Intelligence, AAAIL 268-274.

Ohta, Y. and K. Inoue. 1990. 4 Forward-Chaining Multiple Context Reasoner And
its Application to Logic Design. In IEEE second International Conference on
Tools for Artificial Intelligence, 386-392.

OMG Inc. CORBAfacilities: Common Facilities Architecture.
http://www.omg.org. 1995.

OMG Inc. CORBAservices: Common Object Services Specifications.
http://www.omg.org. 1997.

OMG Inc. The Common QObject Request Broker: Architecture and Specification.
http:/f'www.omg.org. 1998.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

106

a- Oracle Corp. Network Computing Architecture, an Oracle technical white paper.

http://www.oracle.com. 1997.

b- Oracle Corp. Oracle 's JDBS Driver Accessing the Oracle RDBMY for Java,, an

Oracle technical ywhite paper. http://www.oracle.com. 1997.

a- Oracle Corp. Capturing LElectronic Commerce Opportunities, an Oracle business

white paper. http://www.oracle.com. 1998,

b- Oracle Corp.Oracie8i Advanced Queuing, Database-Integrated Message Quening,

an Oracle technical white paper. hitp://www oracle.com. 1998.

c- Oracle Corp Oracle8i Features for Java, fearures overview.

Http://www.oracle.com, 1998,

a- Oracle Corp. Oracle8i Application Developer's Guide — Advanced Queuing.

Http:.//www . oracle.com. 1999.

b- Oracle Corp. Oracle8i Application Developer’s Guide — Fundamentals.

Http://www. oracle.com. 1999.

POSTGRES Group. 1992. The POSTGRES referetice manual version 4. EECS
Dept. University of Califorma, Berkeley.

Resnick, R.1996. Bring Distributed Objects to the World Wide Web. On

http://www.nterlog. com/~resnick/javacorba.htmil,

Roger, J. and M. Atkinson. 1997. Distributed Objects. On
http://bumetb.bu.edu/~bmce/cs776/projects/fali97/rogers/rogers. htmi.

Sampaio, P. and N, Paton. 1997, Deduuctive Object-Oriented Database Systems: A

Survey. E-mail:[sampaiop,norm]@cs.man.ac.u.k‘

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

107

- Smit, J. 1984 Expert Database Systems: A Database Prospective In Expert

Database Sysems, Proceeding From the First-International Workshop: 3-15.

a- Sun Microsystems, Inc. Java Development Kit Documentation jdki.2.

http://www sun.com/software. 1998.

b- Sun Microsystems, Inc. Java Dynamic Management Kit Documentation dmk3.0.

http://www.sun.com/software, 1998.

- Tambe, M. and P.Rosonbloom, 1992. Uni-Rete: Specializing the Rete Match
Algorithm for the Unique Atrribute Representation. On :

http://www.isi.edu/soar/tambe/papers/92/unirete.ps.

- Tanenbaum, A. 1995, Distributed Operation Systems. First edition. Prentice-Hall.
USA.

- TIBCO Software Inc. T/B/Connect for Oracie8 AQ, white paper.

http://www tibco.com, 1998,

- TIBCO Software Inc, 7/B/Rendezvous, white paper. http://www tibco.com. 1997.

- Worrell, K. 1994 Invalidation in Large Scale Nenwork Object Caches. Master

Thesis. University of Colorado.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Appendix A

Student Registration Guidance System - Knowledge Base

In this appendix, we list the general knowledge and the case specific data of the

Student Registration Guidance System (SRGS), which is described in section 4.4.1.

1) Definition : dayOfWeek(dayNo, dayCatcgory): type=prenuse.

Description: define lecture’s days, which take the following forms:
SGF-I?J‘O!?-H'Ed. SuR-fqe, saf, sun, mon, tue, or 'H‘L’d,

Knowledge: davOfWeek(1, 135). dayQfWeek(3, 135). dayOfWecek(5, 135).
davOfWeek(2, 24). dayOiWeek(4, 24).
davOfWeek(1, 1). dayOfWeek(2, 2). davQfWeek(3, 3),
davOfWeek(4, 4), dayOfWeek(5. 5).

2) Definition :courseRegisterTyvpe(registerType): type=assumption.

Desciiption: determine the course registration type: 1. Regular registration.
2. Parallel with another one.

3. Alternate for a given coursc.

Knowledge: courseRegisierType(l). courseRegisterType(2). courseRegisterType(3).

3) Definition :classfersNo, classNo, dayOfFinalExam, dayCatcgory,
fromHour, toHour): type=assmption,
address="middle_tier_addr”.

Description: list all submitted classes’ information,

Knowledge: # University prerequisites
class(101100, 1, 23, 135, 8.00, 9.00). class(101100, 2, 23, 135, 8.00, 9.00).
class(101100, 3, 23, 24, 11.00, 12.30). class(102100, 1, 22, 135, 8.00, 9.00).
class(102100, 2, 22, 24,930, 11.00). class(102100, 3, 22, 24, 11.00, 12,30).
class(102100, 4, 22, 24, 12.30, 14.00). class(103100, 1, 22, 24, 9.30, 11.00).
class(103100, 2, 22, 24, 9,30, 11.00). class(103100, 3, 22, 135, 13.00, 14.00),
class(204100, 1, 25, 135, 8.00, 9.00). class(204100, 2, 24, 135, 16.00, 11.00).
class(204100, 3, 27, 135, 9.30, 11.00).
Mathematics courses
class(301101, 1, 24, 135, 8.00, 9.00). class(301101, 2, 24, 135, 8.00, 9.00).
class(301101, 3, 24, 135, 9.00, 10.00). class(301101, 4, 24, 135, 9.00, 16.00).
class(301101, 5, 24, 135, 14.00, 15.00). class(301102, 1, 22, 135, 8.00, 9.00).
class(301102, 2, 22, 135, 11.00, 12.00). class(301102, 3, 22, 24, 8.00, 9.30).
class(301201, 1, 25, 135, 8.00,9.00). class(301201, 2, 23, 135, 11.00, 12.00).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

109

class(301203, 1, 25, 135, 11,00, 12.00). class(301203.
class(301319, 1, 25, 135, 13.00, 14.00). class(301329,
class(301329, 2, 25, 24, 11.00, 12.30). class(301101,
class(301101, 2, 24, 135, 8.00, 9.00). class(301339,
class(301339, 2, 26, 24, 11.00, 12.30).

it Physics courses

" class(302101, 1, 22, 135, 8.00,9.00). class(302101,
class(302101, 3, 22, 24, 12.30, 14.00). class(302111.
class(302111, 2, 20, 3, 14.00, 17.00). class(302102,
class(302102, 2, 24, 135, 10.00, 11.00). class(302112,
class(302329, 1, 26, 24, 8.00, 9.30). class(302329.
Chemistry courses

class(303101, 1, 24, 135, 12.00, 13.00). class(303101,
class(303102, 1, 26, 135, 11.00, 12.00). class(303102.
class(303102, 3, 26, 135, 9.00, 10.00). class(303106.
il Biology courses

class(304101, 1, 25, 135, 10.00, 11.00). class(304101,
Geology courses

class(305101, 1, 28, 24, 9.30, 11.00). class(305101.
class(305111, 1, 20, 2, 14.00, 17.00). class(305102,
class(305102, 2, 23, 24, 11.00, 12.30). class(305112,
Computer courses

class(306101, 1, 25, 135, 8.00, 9.00). class(306101.
class(306101, 3, 24, 135, 10.00, 11.00). class(306101.
class(306101, 5, 27, 135, 9.00, 10.00). class{306101,
class(306101, 7, 24, 135, 10.00, 11.00). c/ass{306101.
class(306102, 1, 25, 135, 8.00, 9.00). class(306102,
class(306102, 3, 24, 135, 10.00, 11.00). class(306102,
class(306104, 1, 26, 24, 9.30, 11.00). class(306104.
class(306104, 3, 26, 24, 9.30, 11.00), class(306104,
class(306105, 1, 26, 135, 12.00, 13.00). class(306105,
class(306105, 3, 23, 24, 11.00, 12.30). class(306107,
class(306111, 1,24, 1, 1000, 11.00). class(306111.
class(306111, 3, 24, 5,10.00, 11.00). class(306211,
class(306211, 2, 23, 135, 10.00, 11.00). class(306212,
class(306215, 1, 26,24, 9.30, 11.00). class(306221.
class(306221, 2, 26, 24,930, 11.00). class(306323,
class(306325, 1, 23, 135, 11.00, 12.00). class(306325,
class(306331, 1, 27, 135, 9.00, 10.00). class(306333,
class(306333, 1, 28, 24, 12.30, 14.00). class(306333,
class(306339, 1, 26, 135, 10.00, 11.00). class(306343,

2,
1.
R
L

Z,
i,

1
2.

2

E

8.
2,
4,
2
4
2,
|
2
|
1
1
1
2
i
2

—_—

27, 24, 8.00, 9.30),

25, 135, 13.00. 14.00}).

24, 135, 8.00, 9.00).

26, 135, 10.00, 11.00).

22.135.11.00. 12.00).

20, 1, 14.00, 17.00).

|24, 135, 9.00, 10.00),
.20, 5, 14.00. 17.00).
25, 135, 14.00. 15.00).

.24, 24.11.00, 12.30).
.26, 135, 13.00, 14.00).
19, 2. 14.00, 17.00).
_25. 135, 11.00, 12.00).

(28,24, 11.00, 12.30).

24, 135, 9.00, 10.00).

20, 4. 14.00, 17.00).

_27. 135, 9.00. 10.00).

24, 24, 8.00, 9.30}.

. 24, 24, 8.00, 9.30).

25, 135, 8.00, 9.00).
27, 135, 9.G0, 10.00).
24,24, 8.00, 9.30}.

.23, 135, 11.00, 12.00).
.23, 135, 11.00, 12.00).

23,24, 11.00, 12.30).

.27, 135, 9.00, 10.00).
.24, 3. 10.00, 11.00).
_23, 135, 10.00, 11.00),
_24, 135, 10.00, 11.00).
.25, 135, 8.00. 9.00).
.25, 135, 13.00, 14.00).
.28, 24, 12.30, 14.00).
.27. 135, 9.00, 10.00).
.24, 135.10.00, 11.00).
.25, 135, 8.00, 9.00).

class(306420, 1,23, 24, 11.00, 12.30). class(306431, 1, 23, 24, 11.00, 12.30),
class(306432, 1, 24, 24, 8.00,9.30). class(306433, 1, 27, 135, 9.00, 10.00).

class(306434, 1, 23, 135, 11.00, 12.00). class(306435, 1, 25, 135, 13.00, 14.00).

class(306437. 1,26, 24,9.30, 11.00). class(306443, 1, 25, 135, 8.00, 9.00).
class(306499, 1, 0, 0, 0.00, 0.00). class(306499, 2. 0, 0, 0.00, 0.00).

class(306499, 3, 0, 0, 0.00, 0.00).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

4)

5)

Definition

Description:

Knowledge:

Definition

Description:

Knowledge:

110

- groupsPlan{subjectNo, planYear, grpNo, totalWeights).

type=premisc,
address="middlc_ticr_addr”,

filter= subjectNo == Subject_No.

planYcar == Plan_Ycar.
divide cach major's {or subjcct’s) shect plan into its main groups.

note: below, we list only the groups of the subject (306/1992):
groupsPlan(306, 1992, 1, 9). groupsPlan(306, 1992, 2, 15).
groupsPlan(306, 1992, 3, 30). groupsPlan(306, 1992, 4, 51).
groupsPlan(306, 1992, 5, 9). groupsPlan(306, 1992, 6, 9).
groupsPian(306, 1992. 7, 12).

- sheetPlan(subjcctNo, planYear, grpNo. crsNo, weiglt,

prerequisiteCrsNol, prerequisiteCrsNo2, parallellnd):
type=prenisc,
address="middlc_ticr_addr™,

filter= subjcctNo = = Subjcct_No.

planYcar == Plan_Year.
definc all applicable courscs and their prercquisites in cach main group.

note: we list only the courscs included in cach group of the subject (0306):

groupsPlan(306, 1992, 1, 9).
sheetPlan(306, 1992, 1, 101100, 3, 0, 0, 0).
sheetPlan(306, 1992, 1, 102100, 3, 0, 0, 0).
sheetPlan(306, 1992, 1, 103100, 3, 0, 0. 0)

groupsPlan(306, 1992, 2, 13).

H

sheetPlan(306, 1992, 1, 101100, 3, 0, 0, 0).
sheetPlan(306. 1992, 1, 102100, 3, 0, 0, 0).
sheetPlan(306. 1992, 1, 103100, 3, 0, 0, 0}

sheetPlan(306, 1992, 2. 100.3. 0, 0, 0).
groupsPlan(306, 1992, 3. 30).
sheetPlan(306, 1992, 3, 301101, 3,0, 0. 0).
sheetPlan(306, 1992, 3. 301102, 3, 0301101, 0, 0).
sheetPlan(306, 1992, 3, 301151, 3,0, 0, 0).
sheerPlan(306, 1992, 3, 302101, 3,0, 0, 0).
sheetPlan(306, 1992, 3, 302102, 3, 302101, 0, 0),
sheetPlan(306, 1992, 3. 302111, 1, 302101, 0, 1).
sheetPlan(306, 1992, 3, 302112, 1, 302102, 302111, 1).
sheetPlan(306, 1992, 3, 303101, 3, 0, 0, 0).
sheetPlan(306, 1992, 3, 303102, 3, 303101, 0, 0).
sheetPlan(306, 1992, 3, 303106, 2, 303102, 0, 1).
sheetPlan(306, 1992, 3, 304101, 3,0, 0, 0).
sheetPlan(306, 1992, 3, 304102, 3, 304101, 0, 0).
sheetPlan(306, 1992, 3, 304103, 1, 304101, 0, 1).
sheetPlan(306, 1992, 3, 304104, 1, 304102, 304103, 1),
sheetPian(306, 1992, 3, 305101, 3, 0, 0, 0).
sheetPlan(306, 1992, 3, 305102, 3, 305101, 0, 0).
sheetPlan(306, 1992, 3, 305111, 1, 305101, 0, 1).
sheetPlan(306, 1992, 3, 305112, 1, 305102, 305111, 1).
sheetPlan(306, 1992, 3, 306101, 3, 0, 0, 0).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

111

sheetPlan(306, 1992_ 3, 306102, 3, 306101, 0, 0).
groupsPlan(306, 1992, 4, 51).
sheetPlan(306, 1992, 4, 306111, 1,0, 0, 0).
sheetPlan(306, 1992, 4, 306211, 3, 306101, 0, 0).
sheetPlan(306, 1992, 4. 306212, 3, 306211, 0, 0).
sheetPlan(306, 1992, 4, 306221, 3, 0, 0, 0).
sheetPlan(306, 1992, 4, 306222, 3, 306211, 306221, 0).
sheetPlan(306, 1992 4. 306323, 3, 306222, 1. 0).
sheetPlan(306, 1992, 4, 306325, 3. 306222, 0. 0).
sheetPlan(306, 1992, 4, 306331, 3, 306212, 0, 0).
sheetPlan(306, 1992, 4, 306333, 3, 306331, 0, 0).
sheetPlan(306, 1992, 4. 306335, 3, 306221, 0, 0).
sheetPlan(306, 1992, 4306341, 3, 306211, 301241, 0).
sheetPlan(306, 1992, 4, 306343, 3, 306341, 0. 0).
sheetPlan(306, 1992, 4. 306431, 3, 306331, 306323, 0).
sheetPlan(306, 1992, 4, 306432, 3, 306331, 306325, 0).
sheefPlan(306, 1992, 4, 306434, 3, 306323, 306333, 0).
sheetPlan(306, 1992, 4, 306433, 3, 306325, 306431, 0).
sheetPlan(306, 1992, 4, 306442, 3, 306331, 0, 0).
sheetPlan(306, 1992, 4_ 306499, 2, 306222, 306331. 0}.
groupsPlan(306, 1992, 5, 9).
sheetPlan(306, 1992, 5306214, 3. 306101, 0, 0).
sheetPlan(306, 1992. 5, 306215, 3, 306101, 0, 0).
sheetPlan(306, 1992, 5, 306326, 3, 306325, 0, 0).
sheetPlan(306, 1992, 5. 306345, 3. 301241, 0306331, Q).
sheetPlan(306, 1992, 5, 306346, 3, 301241, 0, 0).
groupsPlan(306, 1992, 6, 9).
sheetPlan(306, 19926, 300420, 3, 306325, 0, 0).
sheetPlan{306, 1992, 6, 306421, 3, 306325, 0, 0).
sheetPlan(306, 1992, 6, 306435, 3, 306331, 0, 0).
sheetPlan(306, 1992, 6, 306436, 3, 306432, 0, 0).
sheetPlan(306, 1992 6, 306437, 3, 306331, 0, 0).
sheetPlan(306, 1992, 6, 306438, 3, 306335, 0, 0).
sheetPlan(306, 1992, 6, 306441, 3, 306341, 0, 0).
sheetPlan(306, 1992, 6, 306443, 3, 306343, 0, 0).
sheetPlan(306, 1992, 6, 306445, 3,0, 0, 0).
sheetPlan(306, 1992, 6, 306490, 3, 0, 0, 0).
groupsPlan(306, 1992, 7. 12).
sheetPlan(306, 1992, 7, 301201, 3, 301102, 0, 0).
sheetPlan(306, 1992, 7, 301203, 3, 301101, 0, 0).
sheetPlan(306, 1992, 7, 301231, 3, 0,0, 0).
sheetPlan(3006, 1992, 7, 301241, 3,0, 0, 0).

6) Definition : student(stdNo, subjectNo, planYcar): type=assmption,
address="middle_tier_addr™,
filter= stdNo = = Student_No,

stdStatus 1=0 .

Description: define student basic information.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Knowledge:

7) Definition

Description:

Knowledge:

8) Definmition

Description:

Knowledge:

9) Definition

Description;

Knowledge:

10) Defimtion

Description:

Knowiedge:

11} Definition :

112

e.g.. student(950101, 0306, 1992).

 registeredGroups(stdNo, grpNo, weight):

typc=premisc,
address="middlc_ticr_addr™,
filtcr= stdNo = = Student_No.

present student’s registered groups” surmmarics.

c.g., registeredGroups(950101, 1, 6).
registeredGroups(950101, 2. 3). regisieredGroups(950101, 3, 6),
registeredGroups(950101, 4, 6). registeredGroups(950101, 5, 3).
registeredGroups(950101, 6, 0). registeredGroups(950101, 7. 0).

- registeredCourse(stdNo, crsNo. grpNo, weight):

type=premise,
address="nuddlc_tier_addr™.
filter= stdNo = = Student_No.

present student’s registered courses (i.c., group's details).

cg., registeredCourse(950101, 101100, 1, 3).
registeredCourse(950101. 103100, 1, 3).
registeredCourse(950101, 303100, 2, 3).
registeredCourse(950101, 3011013, 3).
registeredCourse(950101, 302101, 3, 3).
registeredConrse(950101, 306101, 4, 3).
registeredConrse(950101, 306211, 4, 3).
regisieredConrse(950101, 306214, 5, 3}.

- alternativeCourse(stdNo, crsNo, altemativeCrsNo):

type=assumption,
address="middle_ticr_addr”,
filler= stdNo = = Student_No.

determine student’s alternate courses (¢xist for special circumstances).

e.g.. alernativeCourse(360355, 306445, 306443).

- parallelReg(stdNo, crsNo, prerequisiteCrsNo).

gencrate all courses that must be taken in parallel with their prerequisites.

secc 11-E,F, G, &H

classTryReg(stdNo, crsNo, grpNo, weight, classNo, dayOfF i11alEx£1m,

dayCategory, fromHour, toHour, registerType): type=assumption.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

113

Description: determine all candidatc classcs for cach student that he/she can register in,
A) university clective courses that end with 100.
B) courses without prerequisitc.
C) courscs with onc prior prerequisite.
D) courses with two prior prercquisites,
E) courscs with onc parallel prerequisite.
F) courscs with onc prior prerequisite and another parallel prerequsite.
() complementary to (E).
H) courses with two parallel prerequisites.
I) altermatc courscs.

Knowledge: A) classTryReg(StdNo. CrsNo, GrpNo, Weight, ClassNo, DavFE.
DayCat, FromHr, ToHr, 1) :-
student(StdNo, SubjcctNo, PlanYcar),
sheerPlan{SubjcctNo, PlanYcar, GrpNo, 100. Weight, 0. 0.
Parallellnd),
class(CrsNo, ClassNo, DayFE, DayCat, FromHr, ToHr),
mod(CrsNo, 1000) == 100, floor{CrsNo/1G0000) = 1.

B) classTryReg{StdNo, CrsNo, GrpNo, Weight. ClassNo, DayFE,
DayCat, FromHr, ToHr, 1) :-
student(StdNo, SubjcctNo, PlanYcar),
sheetPlan{SubjectNo. PlanYcar, GrpNo, CrsNo. Weight, 0, 0,
Parallellnd),
class(CrsNa, ClassNo, DayFE. DayCat, FromHr, ToHr).

C) classTryReg{StdNo, CrsNo, GrpNo, Weight, ClassNo, DayFE.
DayCat, FromHr, ToHr, 1) :-
studeni(StdNo, SubjectNo, PlanYcar),
sheetPlan(SubjectNo, PlanYcar, GrpNo, CrsNo, Weight,
PreCrsNo. 0, Parallellnd), PreCrsNo 1= 0,
registeredCourse(StdNo, PreCrsNo, GrpNo2, Weight2),
class(CrsNo, ClassNo, DayFE. DayCat, FromHr, ToHr).

D) classTryReg(StdNo, CrsNo, GrpNo, Weight, ClassNo, DayFE.
DayCat, FromHr, ToHr, 1) :-
student(StdNo_ SubjectNo, PlanYcar),
registeredCourse(StdNo, PreCrsNol, GrpNo2, Weight2),
registeredCourse(StdNo, PreCrsNo2, GrpNo3, Weight3),
sheetPlan{SubjectNo, PlanYear, GrpNo, CrsNo, Weight,
PreCrsNol, PreCrsNo2, Paralletind), PrcCrsNo2 =0,

class(CrsNo, ClassNo, DayFE, DayCat, FromHr, ToHr).

E) classTryReg(StdNo, CrsNo, GrpNo, Weight, ClassNo, DayFE,
DayCat, FromHr, ToHr, 2),
parallelReg(StdNo, CrsNo, PreCrsNol) :-
student(StdNo, SubjectNo, PlanYear),
sheetPlan{SubjectNo, PlanYear, GmpNo, CrsNo, Weight,
PreCrsNol, 0, 1), PreCrsNol =0, -~ - :
classTryReg(StdNo, PreCrsNol, GrpNo2, Weight2,
ClassNo2, DayFE2, DayCat2, FromHr2, ToHr2, Type2),
class(CrsNo, ClassNo, DayFE, DayCat, FromHr, ToHr).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

114

F) classTryReg(StdNo, CrsNo, GrpNo, Weight, ClassNo, DayFE.
DavCat, FromHr, ToHr, 2),
parallelReg(StdNo. CrsNo, PreCrsNo2) -
student(StdNo, SubjectNo, PlanYcar).
registeredCourse(StdNo, PreCrsNol, GrpNo2. Weight2).
sheetPlan{SubjectNo, PlanYear, GrpNo, CrsNo, Weight,
PreCrsNol, PreCrsNo2, 1), PreCrsNo2 1= 0.
classTryReg(StdNo, PreCrsNo2, GrpNo3, Weight3.
ClassNo3, DayFE3, DayCat3, FromHr3, ToHr3. Typc3),
class(CrsNo. ClassNo, DayFE, DayCat, FromHr, ToHr).

G) classTryReg(StdNo, CrsNo. GrpNo. Weight, ClassNo. DayFE,
DayCat, FromHr, ToHr, 2).

parallelReg(StdNo, CrsNo, PreCrsNol) -
student(StdNo, SubjcetNo, PlanYcar).
registeredCourse(StdNo. PreCrsNo2, GrpNo3. Weight3),
sheetPlan(SubjectNo, PlanYcar, GrpNo, CrsNo, Weight,

PreCrsNol, PreCrsNo2. 1), PreCrsNo2 1=0),
classTrvReg(StdNo, PrcCrsNol, GrpNo2, Weight2,
ClassNo2, DayFE2, DayCat2, FromHr2, ToHr2, Type2),

class(CrsNo, ClassNo, DayFE, DayCat, FromHr, ToHr).

H) classTryReg(StdNo, CrsNo, GrpNo, Weight, ClassNo, DayFE,
DayCat, FromHr, ToHr, 2),
paralleiReg(5tdNo, CrsNo, PrcCrsNol),
paralielReg(StdNo, CrsNo, PrcCrsNo2) -
student(StdNo, SubjectNo, PlanYcar).
sheetPlan{SubjectNo, PlanYcar, GrpNo, CrsNo, Weight,
PreCrsNol, PreCrsNo2. 1), PreCrsNo2 1=0,
classTryReg(StdNo, PreCrsNol, GrpNo2, Weight2,
ClassNo2, DayFE2, DayCat2. FromHr2, ToHr2, Typel),
classTryReg(StdNo, PreCrsNo2, GmpNo3, Weight3,
ClassNo3, DayFE3, DayCat3, FromHr3, ToHr3, Type3),
class(CrsNo, ClassNo, DayFE, DayCat, FromHr, ToHr).

1) classTryReg(StdNo, AlternativeCrsNo, GrpNo, Weight, ClassNo,

DayFE, DayCat, FromHr, ToHr, 3) :-
student(StdNo, SubjectNo, PlanYear),
alternativeCourse(StdNo, CrsNo, AlternativeCrsNo),
sheetPlan(SubjectNo, PlanYear, GrpNo, CrsNo, Weight,

PrcCrsNol, PreCrsNo2, Parallclind),
class{AltcrnativeCrsNo, ClassNo, DayFE, DayCat,
FromHr, ToHr).

12) Definition :sugSchedule(stdNo, crsNol, crsNo2, ersNo3, crsNo4, crsNo3,
crsNob, crsNo7); type=premisc.

Description; an optional rclation that narrows the scarch in the listed courses only.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

115

Knowledge: sec 13.

13) Definition :suggestedCourseNotFound(}.

Description: check for existence of all candidate classes in the suggested courscs list. This check is
useless if relation |2 does not exist in student casc data.
Knowledge: suggestedCourseNotlound() :-
classTryReg(StdNo, CrsNo, GrpNo, Weight,
ClassNo, DayvFE, DayCat, FromHr. ToHr. Typc),
Weight > 0.
sugSchecdule(StdNo. CrsNol. CrsNo2, CrsNo3. CrsNod,
CrsNo5, CrsNob, CrsNo7),
sign(abs(CrsNo - CrsNol)} + sign(abs(CrsNo - CrsNo2}) +
sign{abs(CrsNo - CrsNo3)) + sign(abs(CrsNo - CrsNod)) +
sign(abs(CrsNo - CrsNo3)) + sign{abs(CrsNo - CrsNo6)} +
sign(abs(CrsNo - CrsNo7))==7.

14) Definition : afreadvReg().
Description: check if the selected course {or alternate course) is already registered.

Knowledge: A)alreadvReg() -
classTryleg(StdNo. CrsNo, GrpNoi, Weighti.
ClassNol, DayFEl, DayCatl, FromHr}, ToHrl, Typel),
Weightl > 0, -
registeredCourse(StdNo, CrsNo, GrpNo2, Weight2).
B) alreadyReg() -
alternativeCourse{StdNo, CrsNo, AltemativeCrsNo),
registeredConrse(StdNo, CrsNo, GrpNo2, Weight2).

15) Definition : sameCourse(}.

Description: prohibit any two cquivalent classes to be in the same schedule. If they are:
A) from the same coursc.
B) alternatives to each others.
C) alternatives to another conumon coursc.

Knowledge: A) sameCourse(} -
classTryReg(StdNo, CrsNo, GrpNol, Weight1,
ClassNol, DayFEl, DayCatl, FromHrl, ToHrl, Typel),
classTryReg(StdNo, CrsNo, GrpNo2, Weight2,
ClassNo2, DayFE2, DayCat2, FromHr2, ToHr2, Typc2),
ClassNotl < ClassNo2.

B) sameCourse() :-
' alternativeCourse(StdNo, CrsNo, AlternativeCrsNo),
classTryReg(StdNo, CrsNo, GrpNo2, Weight2,
ClassNo2, DayFE2, DayCat2, FromHr2, ToHr2, Type2),
Type2 <3.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

116

C) sameCourse() -
alternativeCourse(StdNo, CrsNo, AltemativeCrsNol),
alternativeCourse(StdNo, CrsNo, AltemativeCrsNo2),
altemmativeCrsNol < AlternativeCrsNo2.

16) Definition : conflictTime().

Description: guarantee that no time conflict in the same schedulc.

Knowledge: conflictTime() -
classTriReg(StdNo, CrsNol, GrpNol, Weightl.
ClassNol, DayFEL. DayCatl, FromHrl. ToHrl. Typel).
davOfWeek(DayNo, DayCatl),
davQfWeck(DayNo. DayCat2),
classTryReg(StdNo, CrsNo2. GrpNo2, Weight2,
ClassNo2, DayFE2, DayCat2, FromHr2, ToHr2, Type2),
CrsNol < CrsNo2. FromHr] < ToHr2,
FromHr2 < ToHrl.

17) Definition : threelinalExamsinTheSameDay().
Description: ensure that no three classes their final cxams are in the same day.

Knowledge: threelinalExamsinTheSameDay() -

classTryReg(StdNo. CrsNol, GrpNol, Weightl,

ClassNol, DayFE, DayCat}, FromHrl, ToHrl, Typel),
class TryReg(StdNo, CrsNo2, GrpNo2. Weight2,

ClassNo2, DayFE, DayCat2, FromHr2, ToHr2, Typc2).
classTryReg({StdNo, CrsNo3. GrpNo3, Weight3.

ClassNo3, DayFE, DayCat3, FromHr3, ToHr3, Type3).
CrsNol < CrsNo2,
CrsNo2 < CrsNo3.

18) Definition : classHighOverhead().

Description: refuse any schedule that obligates the student to :
A) come at §:00 every morning,.
B) lcave aftemoon cvery day.
C) get three successive classcs without rest.

Knowledge: A) classHighOverhead() :-
classTryReg(StdNo, CrsNol, GrpNol, Weightl,
ClassNol, DayFE1, 135, 8.00, ToHrl, Typel).
classTryReg(StdNo, CrsNo2, GrpNo2, Weight2,
ClassNo2, DayFE2, 24, 8.00, ToHr2, Typc2),
CrsNol = CrsNo2. - o

B) classHighOverhead() :-
classTryReg(StdNo, CrsNol, GrpNol, Weightl,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

117

ClassNol, DayFE1, 133, FromHrl, ToHrl, Typel),
classTryReg(StdNo, CrsNo2, GrpNo2, Weight2,

ClassNo2, DayFE2, 24, FromHr2, ToHr2, Type2),
CrsNol 1= CrsNo2, ToHr! > 13, ToHr2 > |3,

C) classHighOverhead() -
classTryReg(StdNo. CrsNol, GrpNol, Weight],
ClassNol, DayFEL. DayCatl, FromHrl. ToHrl. Typel).
dayOftVeek(DayvNo, DayCatl),
dayQfeek(DayNo, DayCat2),
classTryReg(StdNo. CrsNo2, GrpNo2, Weight2.
ClassNo2, DayFE2, DayCat2, ToHrl, ToHr2. Typc2).
davOfWeek(DayNo, DayCat3),
classTrvReg(StdNo, CrsNo3, GrpNo3, Weight3,
ClassNo3. DayFE3, DayCat3, ToHr2, ToHr3. Tvpe3).
19) Definition : courseTryReg(stdNo, crsNo. grpNo, weight).

Description: generate all courses that can be registered, based on classTriReg relation.
A} define a null course (0).
B) determine regular coursces.
C) determine substituted courses.
Note that, this relation generates multiple-context search spaccs.

Knowledge: A) courseTryReg(StdNo, 0, 0, 0) :-
student(StdNo, SubjcctNo, PlanYcar).

B) courseTryReg{StdNo. CrsNo, GrpNo, Weight) :-
classTryReg(StdNo, CrsNo, GrpNo, Weight,
ClassNo, DayFE, DayCat, FromHr. ToHr, Typc).
registerType(Type), Type < 3.

C) conrseTryReg(StdNo, CrsNo. GrpNo, Weight) :-
classTryReg(StdNo, AlicmativeCrsNo, GrpNo, Weight,
ClassNo, DayFE, DayCat, FromHr. ToHr, 3).
registerType(3).
alternativeConrse(StdNo, CrsNo, AltemativeCrsNo),

20) Definition : groupOverFlow().

Description: discard any schedule that causes an overflow in onc of main subject’s groups.
This 1s due to tryving to rcgister:
A) a course into a certam group,
B) two courses into a certain group.
C) three courses into a certain group.
D) four courses into a given group.
E) five courses into a given group.
F) six courscs into a given group.
(3) seven courses into a given group.

Knowledge: A) groupOverFlow():-
student(StdNo, SubjectNo, PlanYear),

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

118

groupsPlan{SubjectNo, PlanYcar, GrpNo, PlanTotal),
registeredGroups(StdNo, GrpNo, StudentTotal).
courseTryReg{8tdNo, CrsNo, GrpNo, Weight),
StudentTotal >= PlanTotal.

B) groupOverfiow() :-

student(StdNo, SubjectNo, PlanYcar),
groupsPlan(SubjcctNo, PlanYear, GrpNo. PlanTotal).
registeredGroups(StdNo, GrpNo, StudentTotal),
courseTrvReg(StdNo, CrsNol, GrpNo, Weight1).
courselrvReg(StdNo, CrsNo2, GrpNo, Weight2).
CrsNol < CrsNo2,
StudentTotal + Weightl + Weight2 -

min{Weight1, Wcight2) >= PlanTotal.

C) groupOverFlow() -
studeni(StdNo. SubjectNo, PlanYcar),
groupsllan(SubjectNo, PlanYcar, GrpNo, PlanTotal),
registercdGroups(StdNo, GrpNo, StudentTotal),
courselriteg(StdNo, CrsNol, GrpNo, Weightl),
courseTryReg(StdNo, CrsNo2, GipNo, Weight2),
courseTrvReg(StdNo, CrsNo3, GrpNo, Weight3).
CrsNol < CrsNo2, CrsNo2 < CrsNo3,
StudentTotal + Weightl + Weight2 + Weight3 -
min(min(Weight1, Weight2), Weight3) >= PlanTotal,

D) groupOveriiow() -)
student{StdNo, SubjectNo, PlanYear),
groupsPlan{SubjcctNo, PlanYcar, GrpNo, PlanTotal),
registeredGroups(StdNo, GrpNo, StudentTotal),
courseTryReg(StdNo, CrsNol, GmpNo, Weightl),
courseTryReg(StdNo, CrsNo2, GrpNo, Weight2),
courseTryReg(StdNo, CrsNo3, GrpNo, Weight3),
conrseTryReg(StdNo, CrsNod, GrpNo, Weightd),
CrsNol < CrsNo2, CrsNo2 < CrsNo3, CrsNo3 < CrsNo4,
StudentTotal + Weightl + Weight2 + Weight3 + Weight4 -
min{min{Weight 1, Weight2}, min(Weight3, Wcight4)) >=

4 g 1 8 3 3 PlanTotal.
E) groupOveriiow() :-

student(StdNo, SubjectNo, PlanYcar),
groupsPlan(SubjcctNo, PlanYear, GrpNo, PlanTotal),
registeredGroups(StdNo, GrpNo, StudentTotal),
courseTryReg(StdNo, CrsNol, GrpNo, Weightl),
courseTryReg(StdNo, CrsNo2, GrpNo, Weight2),
courselryReg{StdNo, CrsNo3, GrpNo, Wcight3),
courseTrvReg(StdNo, CrsNod, GrpNo, Weightd),
courseTryReg(StdNo, CrsNo5, GrpNo, Weight5),
CrsNol < CrsNo2, CrsNo2 < CrsNo3,

CrsNo3 < CrsNod, CrsNo4 < CrsNo§,

StudentTotal + Weightl + Weight2 + Weight3 +-Wcight4 + .
Weight3 -

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

119

min{min(Wcightl, Weight2},
min{min(Weight3, Weight4), Weight5)) >= PlanTotal.

F) groupOverFlow():-
student(StdNo, SubjectNo, PlanYear),
groupsPlan(SubjectNo, PlanYcar, GrpNo, PlanTotal),
registeredGroups(StdNo, GrpNo, StudentTotal).
courseTrvReg(StdNo, CrsNol, GrpNo, Weight 1),
courseTrvieg(StdNo, CrsNao2, GrpNo, Weight2),
courseTryReg{StdNo, CrsNo3, GrpNo, Weight3).
courseTrvReg(StdNo, CrsNod, GrpNo, Weightd),
courselrvReg(StdNo, CrsNo5, GrpNo, Weight5),
courselryReg{StdNo, CrsNo6. GrpNo, Wcighto),
CrsNol < CrsNo2, CrsNo2 < CrsNo3, CrsNo3 < CrsNod,
CrsNo4 < CrsNo$, CrsNo5 < CrsNo6,
StudentTotal + Weightl + Weight2 + Weight3 + Weightd +
Weight5 + Weight6 -
min{min{min(Weight!, Weight2),
min{Weight3, Weight4)),
min{Weight5, Weight6)) >= PlanTotal.

G) GroupOverlilow().~
student{StdNo, SulyectNo, PlanYear),
groupsPlan{SubjcctNo, PlanYcar, GrpNo, PlanTotal),
registeredGroups(StdNo, GrpNo, StudentTotal),
courseTrvReg(StdNo, CrsNol, GrpNo, Weight1),
coursel'ryReg(StdNo, CrsNo2, GrpNo, Weight2),
courseTrvReg(StdNo, CrsNo3, GrpNo, Weight3),
courselryReg(StdNo, CrsNod, GrpNo, Weightd),
courseTryReg(StdNo, CrsNo3, GrpNo, Weight5),
conurseTriReg(StdNo, CrsNo6, GrpNo, Weight6).
courseJryReg(StdNo, CrsNo7, GrpNo, Weight7).
CrsNol < CrsNo2, CrsNo2 < CrsNo3, CrsNo3 < CrsNod,
CrsNo4 < CrsNoS5, CrsNo3 < CrsNo6, CrsNo6 < CrsNo7,
StudentTotal + Weight] + Weight2 + Weight3 + Weightd +
Weight5 + Weighto + Weight7 -

min(min{min{Weight1, Weight2},

min(Weight3, Weightd)),

min(min{Weight5, Weight6),
Weight7)i »= PlanTotal.

21) Definition :courseOverhead().

Description: refuse any schedule that includes:
A) three courses from other collages.
B) five courses from the student’s major.

Knowledge: A} courseOverhead(}.-- - -
student(StdNo, SubjectNo, PlanYear),
courseTrvReg(StdNo, CrsNol, GrpNol, Weightl), Weight1>0,
floor{CrsNo1/100000) = floor(SubjectNo/100),

Library of University of Jordan - Center of Thesis Deposit

hts Reserved -

All Ri

120

courseTrvReg(StdNo, CrsNo2, GrpNo2, Weight2), Weight2>0),
floor{CrsNo2/100000) != floor(SubjcctNo/ 100},
courseTrvReg(StdNo, CrsNo3, GrpNo3, Weight3), Weight3>0,
floor{CrsNo3/100000) 1= floor(SubjectNo/ 1 00),

CrsNo! < CrsNo2, CrsNo2 < CrsNo3.

B) courseOverhead():-
student(StdNo, SubjcctNo, PlanYcar),
courseTryReg(StdNo, CrsNol, GrpNol, Weightl).
floor(CrsINo1/1000) == SubjectNo,
courseTryReg(StdNo, CrsNo2, GrpNo2, Weight2).
floor{CrsNo2/1000) == SubjectNo,
courseTryReg(StdNo, CrsNo3, GrpNo3, Weight3),
floor(CrsNo3/1000) == SubjectNo,
courselryReg(StdNo, CrsNod, GrpNod, Weightd),
floor(CrsNo4/1000) == SubjcctNo,
courselrvReg(StdNo, CrsNoS, GrpNo3, Weight5),
floor(CrsNo5/1000) == SubjcctNo.
CrsNol < CrsNo2, CrsNo2 < CrsNo3, CrsNo3 < CrsNod,
CrsNod < CrsNo5.

22) Definition : regSchedule(stdNo, crsNol, crsNo2, crsNo3, crsNod, crsNo3,
crsNob, crsNo7).

Description: generate schedules in term of courscs. where the schedule label determine the actual
structurc in terms of classcs.
Knowledge: regSchedule(StdNo, CrsNol, CrsNo2, CrsNo3, CrsNod, CrsNo5,
CrsNob6, CrsNo7) :-
conrseTryReg(StdNo, CrsNot, GrpNol, Weightl),
courselryReg(StdNo, CrsNo2, GrpNoZ, Weight2),
courseTryReg(StdNo, CrsNo3, GrpNo3, Weight3),
courseTryReg(StdNo, CrsNo4, GrpNod, Weight4),
courseTryReg(StdNo, CrsNoS5, GrpNo3, Weight5),
courselryReg(StdNo, CrsNo6, GrpNo6, Weight6),
courseTryReg(StdNo, CrsNo7, GrpNo7, Weight7),
Weightl > 0, Weight2 > 0, Weight3 > 0,
Weightd > 0, Weight5 > 0,
CrsNol+(1-sign{CrsNo1))*9999001 <
CrsNo2+(f-sign(CrsNo02))}*9999002 ,
V CrsNo2+(1-sign(CrsNo2))*9996002 <
CrsNa3+(1-sign{CrsNo3)}*9999003 ,
¢ CrsNo3+(1-sign(CrsNo3))*9993003 <
CrsNod+(1-sign(CrsNo4))*9999004 |
CrsNod+(1-sign(CrsNo4))*9999004 <
CrsNo5+(1-sign(CrsNo5)*9999005 ,
CrsNo5+(L-sign(CrsNo5))*9999005 <
CrsNo6+(1-sign{CrsN06))*9999006 ,
CrsNo6+(1-sign{CrsNo6))*3999006 <
CrsNo7+(1-sign(CrsNo7))*9999007 ,
Weight! + Weight2 + Weight3 +
Weightd + Weight5 + Weight6 + Weight7 >= 15,
Weight!l + Weight2 + Weight3 +

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

121

Weight4 + Weight5 + Weight6 + Weight7 <= 8.

23) Definition :paraliciCourseNotFound().

Description: discard any schedule if it includes a course without its paralicl prerequisite,

Knowledge: parallelCourseNotFound():-
parailelReg(StdNo, CrsNo, PreCrsNo),
regSchedule(S1dNo, CrsNol, CrsNo2, CrsNo3, CrsNod,

CrsNo35, CrsNo6, CrsNo7),

sign(abs(CrsNo - CrsNol)) + sign(abs{(CrsNo - CrsNo2)) +
sign(abs(CrsNo - CrsNo3)) + sign(abs(CrsNo - CrsNod)) -+
sign{abs(CrsNo - CrsNo3})) + sign{abs(CrsNo - CrsNo6)} +
sign(abs(CrsNo-CrsNo7)) == 6, # CrsNo bclongs to courscs
sign(abs(PrcCrsNo - CrsNol)) + sign{abs(PrcCrsNo - CrsNo2)) +
sign(abs(PrcCrsNo - CrsNo3)) + sign(abs(PreCrsNo - CrsNod)} +
sign{abs{PrcCrsNo - CrsNo5)) + sign(abs(PrcCrsNo - CrsNo6)} +
sign(abs(PreCrsNo - CrsNo7)) == 7. # PreCrsNo not found

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Appendix B

Experiments’ Case Specific Data

Experiment A
stclent(980001, 306, 1992).
registeredGroups(980001, 1, 3).
registeredConrse(980001, 102100, 1, 3).
registeredGroups(980001, 2, 0).
registeredGroups(980001, 3, 9).
registeredCourse(980001, 304101, 3, 3).
registeredConrse(980001, 305101, 3, 3).
registeredCourse(980001, 306101, 3, 3).
registeredGroups(980001, 4, 0).
registeredGroups(980001, 5, 0).
registeredGroups(980001, 6, 0).
registeredGroups(980001, 7, 0).

01 - sugSchedile(980001, 101100, 301101, 302101, 302111, 303101, 306102, 0).
02 - sugSchedule(980001, 101100, 204100, 301101, 302101, 302111, 303101, 0).
03 - sugSchedule(980001, 101100, 204100, 301101, 302101, 302111, 306211, 0).
04 - sugSchedule(980001, 204100, 301101, 302101, 302111, 305102, 306102,°0).
05 - sugSchedule(980001, 204100, 301101, 302101, 302111, 306102, 306211, 0)..
(16 - sugSchedile(980001, 103100, 301101, 302101, 305102, 305111, 204100, 0).
07 - sugSchednie(980001, 301101, 302101, 302111, 304102, 306102, 306111, 0}.

08 - sugSchednle(980001, 101100, 103100, 301101, 302101, 305102, 0, 0).

09 - sugSchedule(930001, 101100, 103100, 204100, 301101, 302101, 305102, 0).

10 - sugSchedule(980001, 204100, 301101, 302101, 302111, 305111, 306111,
306102).

Experiment B-01

student(970001, 306, 1992).

registeredGroups(970001, 1, 9).
registeredCourse(970001, 101100, 1, 3).
registeredCourse(970001, 102100, 1, 3).
registeredCourse(970001, 103100, 1, 3).

registeredGroups(970001, 2, 3).
registeredCourse(970001, 204100, 2, 3).

registeredGroups(970001, 3, 20).
registeredCourse(970001, 301101, 3, 3).
registeredCourse(970001, 301102, 3, 3).
registeredCourse{970001, 302101, 3, 3).
registeredCourse(970001, 302102, 3, 3).
registeredCourse(970001, 302111, 3, 1).
registeredCourse(970001, 302112, 3, 1).
registeredCourse(970001, 306101, 3, 3},

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

123

registeredCounrse(970001, 306102, 3, 3).
registeredGroups(970001, 4, 10).
registeredCourse(970001, 306111, 4, 1).
registeredConrse(970001, 306211, 4, 3).
registeredCourse(970001, 306221, 4, 3).
registeredConrse(970001, 306222, 4, 3).
registeredGroups(970001, 5, 6).
registeredCourse(970001, 306214, 5, 3).
registeredCourse(970001, 306215, 5, 3).
registeredGroups(970001, 6, 0).
registeredGroups(970001, 7, 3).
registeredConrse(970001, 301241, 7, 3).
alternativeCourse(970001, 306323, 301319).
alternativeCourse(970001, 306323, 301329).
aliernativeCourse(970001, 306323, 301339).

Experiment B-02
student(970002, 306, 1992).
registeredGroups(970002, 1, 6).
registeredConrse(970002, 101100, 1, 3).
registeredConrse(970002, 103100, 1, 3).
registeredGroups(970002, 2, 3).
registeredCourse(370002, 202100, 2, 3).
registeredGronps(970002, 3, 25).
registeredCourse(970002, 301101, 3, 3}.
regisieredConrse(970002, 301102, 3, 3}.
registeredCourse(970002, 302101, 3, 3).
registeredCourse(970002, 302102, 3, 3).
registeredCourse(970002, 302111, 3, 1).
registeredCourse(970002, 303101, 3, 3).
registeredCourse(970002, 304101, 3, 3).
registeredCourse(970002, 306101, 3, 3).
regisieredConrse(970002, 306102, 3, 3).
registeredGroups(970002, 4, 10).
registeredConrse(970002, 306111, 4, 1).
registeredCourse(970002, 306211, 4, 3).
registeredCourse(970002, 306221, 4, 3).
registeredCourse(970002, 306222, 4, 3).
registeredGroups(970002, 5, 3).
registeredCourse(970002, 306214, 5, 3).
registeredGroups(970002, 6, 0).
registeredGroups(970002, 7, 6).
registeredCourse(970002, 301203, 7, 3).
registeredConrse(970002, 301241, 7, 3).

Experiment B-03
student(970003, 306, 1992).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

124

registeredGroups(970003, 1, 6),
registeredCourse(970003; 101100, 1, 3).
registeredConrse(970003, 103100, 1, 3).

registeredGroups(970003, 2, 3).
registeredCourse(970003, 204100, 2, 3).

registeredGroups(970003, 3, 28).
registeredCourse(970003, 301101, 3, 3).
registeredCourse(970003, 301102, 3, 3).
registeredCourse(970003, 302101, 3, 3).
registeredCourse(970003, 302102, 3, 3).
registeredCourse(970003, 302111, 3, 1).
registeredCourse(970003, 303101, 3, 3).
registeredCourse(970003, 304101, 3, 3).
registeredCourse(970003, 304102, 3, 3).
registeredCourse(970003, 306101, 3, 3).
registeredCourse(970003, 306102, 3, 3).

registeredGroups(970003, 4, 16).
registeredCourse(970003, 306111, 4, 1).
registeredCourse(970003, 306211, 4, 3).
registeredConrse(970003, 306212, 4, 3).
registeredCourse(970003, 306221, 4, 3).
registeredCourse(970003, 306222, 4, 3).

. registeredCourse(970003, 306331, 4, 3).

registeredGroups(970003, 5, 0).

registeredGroups(970003, 6, 0).

registeredGroups(970003, 7, 6).
registeredCourse(970003, 301203, 7, 3).
regisieredCourse(970003, 301241, 7, 3).

Experiment B-04

student(970004, 306, 1992).

registeredGroups(970004, 1, 6).
registeredCourse(970004, 101100, 1, 3).
registeredCourse(970004, 102100, 1, 3).

registeredGroups(970004, 2, 3).
registeredCourse(970004, 204100, 2, 3).

registeredCGroups(970004, 3, 28).
registeredCourse(970004, 301101, 3, 3).
registeredCourse(970004, 301102, 3, 3).
registeredCourse(970004, 302101, 3, 3).
registeredCourse(970004, 302102, 3, 3).
registeredCounrse(970004, 302111, 3, 1).
registeredCourse(970004, 303101, 3, 3).
registeredCourse(970004, 304101, 3, 3).

- registeredCourse(970004, 305101, 3, 3).

registeredCourse(970004, 306101, 3, 3).
registeredCourse(970004, 306102, 3, 3).

registeredGroups(970004, 4, 10). '

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

125

registeredConrse(970004, 306111, 4, 1).
registeredCourse(970004, 306211, 4, 3).
registeredCourse(970004, 306221, 4, 3).
registeredCourse(970004, 306222, 4, 3).

registeredGroups(970004, 5, 3).

registeredCourse(970004, 306215, 5, 3).

registeredGroups(970004, 6, 0},
registeredGroups(970004, 7, 3).

registeredConrse(970004, 301241, 7, 3).

Experiment B-05
studlent(970005, 306, 1992).
registeredGroups(970005, 1, 9).

registeredConrse(970005, 101100, 1, 3).
registeredCourse(970005, 102100, 1, 3).
registeredCourse(970005, 103100, 1, 3).

registeredGroups(970005, 2, 3).

registeredCourse(970005, 204100, 2, 3).

registeredGroups(970005, 3, 24).

registeredConrse(970005, 301101, 3, 3).
registeredCourse(970005, 301102, 3, 3).
registeredCourse(970005, 302101, 3, 3).
registeredConrse(970005, 302102, 3, 3).
registeredConrse(970005, 304101, 3, 3).
registeredConrse(970005, 305101, 3, 3).
registeredCourse(970005, 306101, 3, 3).
registeredConrse(970005, 306102, 3, 3).

registeredGroups(970005, 4, 10).

registeredCourse(970005, 306111, 4, 1).
registeredConrse(970005, 306211, 4, 3).
registeredConrse(970005, 306221, 4, 3).
registeredCourse(970005, 306222, 4, 3).

registeredGroups(970005, 5, 3).

registeredCourse(970005, 306215, 5, 3).

registeredGroups(970005, 6, 0).
registeredGroups(970005, 7, 3).

registeredCourse(970005, 301201, 7, 3}

Experiment B-06
student(970006, 306, 1992).
registeredGroups(370006, 1, 9).

registeredCourse(970006, 101100, 1, 3).
registeredCourse(970006, 102100, 1, 3).
registeredCourse(970006, 103100, 1, 3).

registeredGroups(970006, 2, 0).
registeredGroups(970006, 3, 20).

registeredCourse(970006, 301101, 3, 3).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

126

registeredCourse(970006, 301102, 3, 3).
registeredCourse(970006, 302101, 3, 3).
registeredConrse(970006, 302102, 3, 3).
registeredCourse(970006, 302111, 3, 1).
registercdConrse(970006, 302112, 3, 1).
registeredConrse(970006, 306101, 3, 3)
registeredConrse(970006, 306102, 3, 3).
registeredGroups(970006, 4, 13).
registeredCourse(970006, 306111, 4, 1).
registeredConrse(970006, 306211, 4, 3).
registeredCourse(970006, 306212, 4, 3).
registeredConrse(970006, 306221, 4, 3).
registeredConrse(970006, 306222, 4, 3).
registeredGroups(970006, 5, 0).
registeredGroups(970006, 6, 0).
regisieredGroups(970006, 7, 3).
registeredCourse(970006, 301201, 7, 3).
alternativeCourse(970006, 306323, 301319).
alternativeConurse(970006, 306323, 302329).

Experiment B3-07
student(970007, 306, 1992).
registeredGroups(970007, 1, 6).
registeredCourse(370007, 102100, 1, 3).
registeredCourse(970007, 103100, 1, 3).
registeredGroups(970007, 2, 3).
registeredConrse(970007, 204100, 2, 3).
registeredGroups(970007, 3, 23).
registeredCourse(970007, 301101, 3, 3).
registeredCourse(970007, 302101, 3, 3).
registeredConrse(970007, 302102, 3, 3).
registeredCourse(970007, 302111, 3, 1).
registeredConrse(970007, 302112, 3, 1).
registeredCourse(970007, 305101, 3, 3).
registeredCourse(970007, 305102, 3, 3).
registeredCourse(970007, 306101, 3, 3).
registeredCourse(970007, 306102, 3, 3).
registeredGroups(970007, 4, 10).
registeredCounrse(970007, 306111, 4, 1).
registeredCourse(970007, 306211, 4, 3).
registeredConrse(970007, 306212, 4, 3).
registeredCourse(970007, 306221, 4, 3).
registeredGroups(970007, 5, 6).
registeredCourse(970007, 306214, 5, 3).
registeredCourse(970007, 306215, 5, 3).
registeredGroups(970007, 6, 0).
registeredGroups(970007, 7, 3).
registeredCourse(970007, 301203, 7, 3).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

127

Experiment B-08
student(970008, 306, 1992).
registeredGroups(970008, 1, 3).
registeredConrse(970008, 101100, 1, 3).
registeredGroups(970008, 2, 0).
registeredGroups(970008, 3, 28).
registeredCourse(970008, 301101, 3, 3).
registeredCourse(970008, 301102, 3, 3).
registeredConrse(970008, 302101, 3, 3).
registeredCourse(970008, 302102, 3, 3).
registeredConrse(970008, 302111, 3, 1).
registeredCourse(970008, 304101, 3, 3).
registeredCourse(970008, 304102, 3, 3).
registeredCourse(970008, 305101, 3, 3).
registeredCourse(970008, 306101, 3, 3).
registeredCourse(970008, 306102, 3, 3).
registeredGroups(970008, 4, 10).
registeredCourse(970008, 306111, 4, 1).
registeredCourse(970008, 306211, 4, 3).
registeredConrse(970008, 306212, 4, 3).
registeredCourse(970008, 306221, 4, 3).
registeredGroups(970008, 5, 0).
registeredGroups(970008, 6, 0).
registeredGroups(970008, 7, 3).
registeredConrse(970008, 301241, 7, 3).

Experiment B-09

student(970009, 306, 1992).

registeredGroups(970009, 1, 6).
registeredCourse(970009, 101100, 1, 3).
registeredCourse(970009, 102100, 1, 3).

registeredGroups(970009, 2, 0).

registeredGroups(970009, 3, 27).
registeredConrse(970009, 301101, 3, 3).
registeredConrse(970009, 301102, 3, 3).
registeredCourse(970009, 302101, 3, 3).
registeredCourse(970009, 303101, 3, 3).
registeredConrse(970009, 303102, 3, 3).
registeredConrse(970009, 305101, 3, 3).
registeredConrse(970009, 305102, 3, 3).
registeredCourse(970009, 306101, 3, 3).
registeredConrse(970009, 306102, 3, 3).

registeredGroups(970009, 4, 13).
registeredCourse(970009, 306111, 4, 1).
registeredConrse(970009, 306211, 4, 3).
registeredCourse(970009, 306212, 4, 3).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

128

registeredConrse(970009, 306221, 4, 3).
registeredConrse(970009, 306222, 4, 3).

registeredGroups(370009, 5, 0).
registeredGroups(970009, 6, 0).
registeredGroups(970009, 7, 6).

registeredCourse(970009, 301201, 7, 3),
registeredConrse(970009, 301203, 7, 3).

Experiment B-10
student(970010, 300, 1992).
registeredGroups(970010, 1, 6).

registeredCourse(970010, 102100, 1, 3).
registeredCourse(970010, 103100, 1, 3).

registeredGronups(970010, 2, 3).

registeredConrse(970010, 204100, 2, 3).

registeredGroups(970010, 3, 25).

registeredConrse(970010, 301101, 3, 3).
registeredConrse(970010, 301102, 3, 3).
registeredConrse(970010, 302101, 3, 3).
registeredConrse(970010, 302111, 3, 1).
registeredConrse(970010, 304101, 3, 3).
registeredConrse(970010, 304102, 3, 3).
registeredConrse(970010, 305101, 3, 3).
registeredCourre(970010, 306101, 3, 3). "
registeredConrse(970010, 306102, 3, 3).

registeredGroups(970010, 4, 9).

regisieredCourse(970010, 306211, 4, 3).
registeredCourse(970010, 306221, 4, 3).
registeredCourse(970010, 306222, 4, 3).

registeredGroups(970010, 5, 3).

registeredCourse(970010, 306215, 5, 3).

registeredGroups(970010, 6, 0).
registeredGroups(970010, 7, 6).

registeredCourse(970010, 301201, 7, 3).
registeredConrse(970010, 301203, 7, 3).

Experiment C
student(960001, 306, 1992).
registeredGroups(960001, 1, 9),

. registeredCourse(960001, 101100, 1, 3).
regisieredCourse(960001, 102100, 1, 3).
registeredConrse{(960001, 103100, 1, 3).

registeredGroups(960001, 2, 9).

registeredCourse(960001, 105100, 2, 3):
registeredCourse(960001, 106100, 2, 3).
registeredCourse(960001, 204100, 2, 3).

registeredGroups(960001, 3, 27).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

129

registeredConrse(960001, 301101, 3, 3).
registeredCourse(960001, 301102, 3, 3).
registeredCourse(960001, 301151, 3, 3).
registeredCourse(960001, 302101, 3, 3).
registeredCourse(960001, 302102, 3, 3).
registeredConrse(960001, 303101, 3, 3).
registeredCourse(960001, 303102, 3, 3).
registeredCourse(960001, 306101, 3, 3).
registeredConrse(960001, 306102, 3, 3).
registeredGroups(960001, 4, 25).
registeredConrse(960001, 306111, 4, 1).
registeredConurse(960001, 306211, 4, 3).
registeredCourse(960001, 306212, 4, 3}
registeredCourse(960001, 306221, 4, 3).
registeredCourse(960001, 306222, 4, 3).
registeredCourse(960001, 306323, 4, 3).
registeredCourse(960001, 306325, 4, 3).
registeredConrse(960001, 306331, 4, 3).
registeredCourse(960001, 306333, 4, 3).
registeredGroups(960001, 5, 9).
registeredConrse(960001, 306214, 5, 3).
registeredConrse(960001, 306215, 5, 3).
registeredCourse(960001, 306338, 5, 3).
registeredGroups(960001, 6, 3).
registeredCourse(960001, 306490, 6, 3).
registeredGroups(960001, 7, 12).
registeredConrse(960001, 301201, 7, 3).
registeredConrse(960001, 301203, 7, 3).
registeredCourse(960001, 301231, 7, 3).
registeredConrse(960001, 301241, 7, 3).

Alerted operations

2 - retraci(class(306437, 1, 26, 24, 9.30, 11.00)).
3 - refract(class(302111, 2, 20, 3, 14,00, 17.00)).

4 - assert(class(306445, 1, 26, 24, 9.30, 11.00)).
5 - assert(class(306437, 2, 26, 24, 9.30, 11.00)).

6 - retraci(class(306437, 1, 26, 24, 9.30, 11.00)).

asserf(class(306437, 1, 26, 24, 9.30, 11.00)).

7 - retract(class(302111, 2, 20, 3, 14.00, 17.00)).

assert{class(302111, 2, 20, 3, 14.00, 17.00)).

8 - refract(class(306437, 1, 26, 24, 9.30, 11.00)).

assert(class(306437, 1, 27, 24, 9.30, 11.00)).

9 - retrac(class(302111, 2, 20, 3, 14.00, 17.00}).

asser(class(302111, 2, 20, 5, 14.00, 17.00)).

Experiment D
sindent(950001, 306, 1992).
registeredGroups(950001, 1, 9).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

130

regisieredCourse(950001, 101100, 1, 3).
registeredConrse(950001, 102100, 1, 3).
registeredCourse(950001, 103100, 1, 3).
registeredGroups(950001, 2, 15).
registeredCourse(950001, 105100, 2, 3).
registeredCourse(950001, 106100, 2, 3}.
regisieredCourse(950001, 201100, 2, 3).
registeredCourse(950001, 202100, 2, 3).
registeredConurse(950001, 204100, 2, 3).
registeredGroups(950001, 3, 27).
registeredConrse(950001, 301101, 3, 3).
registeredConrse(950001, 301102, 3, 3).
registeredConrse(950001, 301151, 3, 3).
registeredConrse(850001, 302101, 3, 3).
registeredCourse{950001, 302102, 3, 3).
registeredConrse(950001, 303101, 3, 3).
registeredCourse(950001, 303102, 3, 3).
registeredCourse(950001, 306101, 3, 3).
regisieredCourse(950001, 306102, 3, 3).
registeredGroups(950001, 4, 45).
registeredCourse(950001, 306111, 4, 1),
registeredConrse(950001, 306211, 4, 3).
registeredConrse(950001, 306212, 4, 3).
registeredCourse(950001, 306221, 4, 3).
registeredCourse(950001, 3006222, 4, 3}.
registeredCourse(950001, 306323, 4, 3).
registeredCourse(950001, 306325, 4, 3).
registeredCourse(950001, 306331, 4, 3).
registeredConrse(950001, 306333, 4, 3).
registeredCourse(950001, 306333, 4, 3).
registeredCourse(950001, 306341, 4, 3).
registeredCourse(950001, 306431, 4, 3),
registeredCourse(950001, 306432, 4, 3).
registeredCourse(950001, 306434, 4, 3).
registeredCourse(950001, 306442, 4, 3).
registeredCourse(950001, 306499, 4, 2).
registeredGroups(950001, 5, 9).
registeredCourse(950001, 306214, 5, 3).
registeredCourse(950001, 306215, 5, 3).
registeredCourse(950001, 306338, 5, 3).
registeredGronps(950001, 6, 3).
registeredCourse(950001, 306490, 6, 3).
registeredGroups(950001, 7, 12).
registeredCourse(950001, 301201, 7, 3).
registeredCourse(950001, 301203, 7, 3).
registeredCourse(950001, 301231, 7, 3).
registeredCourse(950001, 301241, 7, 3).

Alerted operations

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

131

2 - retract(class(306437, 1, 26, 24, 9.30, 11.00)).
3 - retraci(class(302111, 2, 20, 3, 14.00, 17.00)),

4 - asserf(class(306445, 1, 26, 24, 9,30, 11.00)).
5 - asserf(class(306437, 2, 26, 24, 9.30, 11.00)),

6 - resract(class(306437, 1, 26, 24, 9.30, 11.00)).

assert(class(306437, 1, 26, 24, 9.30, 11.00)).

7 - retraci(class(302111, 2, 20, 3, 14.00, 17.00)).

asseri{class(302111, 2, 20, 3, 14.00, 17.00)).

8 - retraci(class(306437, 1, 26, 24, 9.30, 11.00)).

asserf(class(306437, 1, 27, 24, 9.30, 11.00)).

9 - refract(class(302111, 2, 20, 3, 14.00, 17.00)).

asserf(class(302111, 2, 20, 5, 14.00, 17.00)).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

132

31 Ay day i gl Gl plalt A0 B pt dalaiYl dayy
slied
BMas joF r‘l...:-
A
(S s
N [BT
T

PP SRP TN U PV R [E UL YO, PEVLGEN PIFER SR o gl Bgmbe) b b iV 35V
G iy Gy a8 o g SO B nl] o 1 pldl (§ b il i ¢ a3 (Internet/Intranct)

e et L Lo i ol glan 5 2 st ol s s M cndl gl o 55 iy S ..-.,u,,w‘.j, o

G RS PRCR AN NV PR AT SR P Y LY fee GLL Ei i ¢ phatll da it oS Wl M i
da i bia O o e T W L 3 Yy Sy bl phasie ot Db e 3l it (e Gl REPRAL
1 Y gy A0Y) AT O (e-roasoning datialy i 1 plell § gl 3 g S J AL ke L i Lot

Sl ey iz Vi (el e-commieree « e o8 sl 305 S0 J e 05N

SN el ae U Bl ol o Gl il L) (1994 gy 23l M Tad i 7 bt Tadl o)
Ty gt O} SN B 5 bW il e SR A S gn VN TR PP I | NV IRVTRC VAR
T3y g e g e iy A g _;urim:h-,.a;)i,&;g&g&tjngl)lb,ui&;quim ek yall

£ 3P il iy AU il e susdifpstib) AN in pasazd - sill i 23080 0] s Y ikl o

B b on] Wt pllas) 4S5 Ty, Ay b o o o .Igtlncdqbaa:,uﬁfla);)lu»huﬂ
ol Cj-i“ gt S et e Gl od e} @ ez lic .Hindi ptkiy Morgue Pl Je ddaine Y el 3

et O E S .;n_a,-»'-ﬁl RET 3 LT r.»i Gif byl 1y gl | RO

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

	

